ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemlub GIF version

Theorem maxabslemlub 11684
Description: Lemma for maxabs 11686. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
maxabslemlub.a (𝜑𝐴 ∈ ℝ)
maxabslemlub.b (𝜑𝐵 ∈ ℝ)
maxabslemlub.c (𝜑𝐶 ∈ ℝ)
maxabslemlub.clt (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Assertion
Ref Expression
maxabslemlub (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))

Proof of Theorem maxabslemlub
StepHypRef Expression
1 maxabslemlub.clt . . 3 (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2 maxabslemlub.c . . . 4 (𝜑𝐶 ∈ ℝ)
3 maxabslemlub.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 maxabslemlub.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4readdcld 8144 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
63recnd 8143 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
74recnd 8143 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
86, 7subcld 8425 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
98abscld 11658 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
105, 9readdcld 8144 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
1110rehalfcld 9326 . . . 4 (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
12 axltwlin 8182 . . . 4 ((𝐶 ∈ ℝ ∧ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
132, 11, 3, 12syl3anc 1252 . . 3 (𝜑 → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
141, 13mpd 13 . 2 (𝜑 → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
151adantr 276 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
163adantr 276 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℝ)
174adantr 276 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℝ)
1816, 17resubcld 8495 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) ∈ ℝ)
19 2re 9148 . . . . . . . . . . . . . 14 2 ∈ ℝ
2019a1i 9 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ)
2120, 16remulcld 8145 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℝ)
2221recnd 8143 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℂ)
236adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℂ)
247adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℂ)
2522, 23, 24subsub4d 8456 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = ((2 · 𝐴) − (𝐴 + 𝐵)))
26 2cnd 9151 . . . . . . . . . . . . . 14 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℂ)
2726, 23mulsubfacd 8533 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = ((2 − 1) · 𝐴))
28 2m1e1 9196 . . . . . . . . . . . . . 14 (2 − 1) = 1
2928oveq1i 5984 . . . . . . . . . . . . 13 ((2 − 1) · 𝐴) = (1 · 𝐴)
3027, 29eqtrdi 2258 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = (1 · 𝐴))
3123mulid2d 8133 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (1 · 𝐴) = 𝐴)
3230, 31eqtrd 2242 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = 𝐴)
3332oveq1d 5989 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = (𝐴𝐵))
3425, 33eqtr3d 2244 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) = (𝐴𝐵))
35 simpr 110 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
3610adantr 276 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
37 2rp 9822 . . . . . . . . . . . . 13 2 ∈ ℝ+
3837a1i 9 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ+)
3916, 36, 38ltmuldiv2d 9909 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ↔ 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
4035, 39mpbird 167 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))))
415adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴 + 𝐵) ∈ ℝ)
429adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (abs‘(𝐴𝐵)) ∈ ℝ)
4321, 41, 42ltsubadd2d 8658 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)) ↔ (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵)))))
4440, 43mpbird 167 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)))
4534, 44eqbrtrrd 4086 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < (abs‘(𝐴𝐵)))
46 ltabs 11564 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ ∧ (𝐴𝐵) < (abs‘(𝐴𝐵))) → (𝐴𝐵) < 0)
4718, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < 0)
4816, 17sublt0d 8685 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
4947, 48mpbid 147 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < 𝐵)
5016, 17, 49maxabslemab 11683 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
5115, 50breqtrd 4088 . . . 4 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < 𝐵)
5251ex 115 . . 3 (𝜑 → (𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → 𝐶 < 𝐵))
5352orim2d 792 . 2 (𝜑 → ((𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐶 < 𝐴𝐶 < 𝐵)))
5414, 53mpd 13 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cmin 8285   / cdiv 8787  2c2 9129  +crp 9817  abscabs 11474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476
This theorem is referenced by:  maxabslemval  11685  maxleastlt  11692
  Copyright terms: Public domain W3C validator