ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemlub GIF version

Theorem maxabslemlub 11200
Description: Lemma for maxabs 11202. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
maxabslemlub.a (𝜑𝐴 ∈ ℝ)
maxabslemlub.b (𝜑𝐵 ∈ ℝ)
maxabslemlub.c (𝜑𝐶 ∈ ℝ)
maxabslemlub.clt (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Assertion
Ref Expression
maxabslemlub (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))

Proof of Theorem maxabslemlub
StepHypRef Expression
1 maxabslemlub.clt . . 3 (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2 maxabslemlub.c . . . 4 (𝜑𝐶 ∈ ℝ)
3 maxabslemlub.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 maxabslemlub.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4readdcld 7977 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
63recnd 7976 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
74recnd 7976 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
86, 7subcld 8258 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
98abscld 11174 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
105, 9readdcld 7977 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
1110rehalfcld 9154 . . . 4 (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
12 axltwlin 8015 . . . 4 ((𝐶 ∈ ℝ ∧ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
132, 11, 3, 12syl3anc 1238 . . 3 (𝜑 → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
141, 13mpd 13 . 2 (𝜑 → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
151adantr 276 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
163adantr 276 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℝ)
174adantr 276 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℝ)
1816, 17resubcld 8328 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) ∈ ℝ)
19 2re 8978 . . . . . . . . . . . . . 14 2 ∈ ℝ
2019a1i 9 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ)
2120, 16remulcld 7978 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℝ)
2221recnd 7976 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℂ)
236adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℂ)
247adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℂ)
2522, 23, 24subsub4d 8289 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = ((2 · 𝐴) − (𝐴 + 𝐵)))
26 2cnd 8981 . . . . . . . . . . . . . 14 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℂ)
2726, 23mulsubfacd 8365 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = ((2 − 1) · 𝐴))
28 2m1e1 9026 . . . . . . . . . . . . . 14 (2 − 1) = 1
2928oveq1i 5879 . . . . . . . . . . . . 13 ((2 − 1) · 𝐴) = (1 · 𝐴)
3027, 29eqtrdi 2226 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = (1 · 𝐴))
3123mulid2d 7966 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (1 · 𝐴) = 𝐴)
3230, 31eqtrd 2210 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = 𝐴)
3332oveq1d 5884 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = (𝐴𝐵))
3425, 33eqtr3d 2212 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) = (𝐴𝐵))
35 simpr 110 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
3610adantr 276 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
37 2rp 9645 . . . . . . . . . . . . 13 2 ∈ ℝ+
3837a1i 9 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ+)
3916, 36, 38ltmuldiv2d 9732 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ↔ 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
4035, 39mpbird 167 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))))
415adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴 + 𝐵) ∈ ℝ)
429adantr 276 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (abs‘(𝐴𝐵)) ∈ ℝ)
4321, 41, 42ltsubadd2d 8490 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)) ↔ (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵)))))
4440, 43mpbird 167 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)))
4534, 44eqbrtrrd 4024 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < (abs‘(𝐴𝐵)))
46 ltabs 11080 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ ∧ (𝐴𝐵) < (abs‘(𝐴𝐵))) → (𝐴𝐵) < 0)
4718, 45, 46syl2anc 411 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < 0)
4816, 17sublt0d 8517 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
4947, 48mpbid 147 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < 𝐵)
5016, 17, 49maxabslemab 11199 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
5115, 50breqtrd 4026 . . . 4 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < 𝐵)
5251ex 115 . . 3 (𝜑 → (𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → 𝐶 < 𝐵))
5352orim2d 788 . 2 (𝜑 → ((𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐶 < 𝐴𝐶 < 𝐵)))
5414, 53mpd 13 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cmin 8118   / cdiv 8618  2c2 8959  +crp 9640  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  maxabslemval  11201  maxleastlt  11208
  Copyright terms: Public domain W3C validator