ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemlub GIF version

Theorem maxabslemlub 11149
Description: Lemma for maxabs 11151. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
maxabslemlub.a (𝜑𝐴 ∈ ℝ)
maxabslemlub.b (𝜑𝐵 ∈ ℝ)
maxabslemlub.c (𝜑𝐶 ∈ ℝ)
maxabslemlub.clt (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Assertion
Ref Expression
maxabslemlub (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))

Proof of Theorem maxabslemlub
StepHypRef Expression
1 maxabslemlub.clt . . 3 (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2 maxabslemlub.c . . . 4 (𝜑𝐶 ∈ ℝ)
3 maxabslemlub.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 maxabslemlub.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4readdcld 7928 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
63recnd 7927 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
74recnd 7927 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
86, 7subcld 8209 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℂ)
98abscld 11123 . . . . . 6 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
105, 9readdcld 7928 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
1110rehalfcld 9103 . . . 4 (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ)
12 axltwlin 7966 . . . 4 ((𝐶 ∈ ℝ ∧ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
132, 11, 3, 12syl3anc 1228 . . 3 (𝜑 → (𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))))
141, 13mpd 13 . 2 (𝜑 → (𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
151adantr 274 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
163adantr 274 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℝ)
174adantr 274 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℝ)
1816, 17resubcld 8279 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) ∈ ℝ)
19 2re 8927 . . . . . . . . . . . . . 14 2 ∈ ℝ
2019a1i 9 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ)
2120, 16remulcld 7929 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℝ)
2221recnd 7927 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) ∈ ℂ)
236adantr 274 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 ∈ ℂ)
247adantr 274 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐵 ∈ ℂ)
2522, 23, 24subsub4d 8240 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = ((2 · 𝐴) − (𝐴 + 𝐵)))
26 2cnd 8930 . . . . . . . . . . . . . 14 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℂ)
2726, 23mulsubfacd 8316 . . . . . . . . . . . . 13 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = ((2 − 1) · 𝐴))
28 2m1e1 8975 . . . . . . . . . . . . . 14 (2 − 1) = 1
2928oveq1i 5852 . . . . . . . . . . . . 13 ((2 − 1) · 𝐴) = (1 · 𝐴)
3027, 29eqtrdi 2215 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = (1 · 𝐴))
3123mulid2d 7917 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (1 · 𝐴) = 𝐴)
3230, 31eqtrd 2198 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − 𝐴) = 𝐴)
3332oveq1d 5857 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − 𝐴) − 𝐵) = (𝐴𝐵))
3425, 33eqtr3d 2200 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) = (𝐴𝐵))
35 simpr 109 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
3610adantr 274 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
37 2rp 9594 . . . . . . . . . . . . 13 2 ∈ ℝ+
3837a1i 9 . . . . . . . . . . . 12 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 2 ∈ ℝ+)
3916, 36, 38ltmuldiv2d 9681 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ↔ 𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
4035, 39mpbird 166 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))))
415adantr 274 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴 + 𝐵) ∈ ℝ)
429adantr 274 . . . . . . . . . . 11 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (abs‘(𝐴𝐵)) ∈ ℝ)
4321, 41, 42ltsubadd2d 8441 . . . . . . . . . 10 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)) ↔ (2 · 𝐴) < ((𝐴 + 𝐵) + (abs‘(𝐴𝐵)))))
4440, 43mpbird 166 . . . . . . . . 9 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((2 · 𝐴) − (𝐴 + 𝐵)) < (abs‘(𝐴𝐵)))
4534, 44eqbrtrrd 4006 . . . . . . . 8 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < (abs‘(𝐴𝐵)))
46 ltabs 11029 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ ∧ (𝐴𝐵) < (abs‘(𝐴𝐵))) → (𝐴𝐵) < 0)
4718, 45, 46syl2anc 409 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐴𝐵) < 0)
4816, 17sublt0d 8468 . . . . . . 7 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
4947, 48mpbid 146 . . . . . 6 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐴 < 𝐵)
5016, 17, 49maxabslemab 11148 . . . . 5 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
5115, 50breqtrd 4008 . . . 4 ((𝜑𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → 𝐶 < 𝐵)
5251ex 114 . . 3 (𝜑 → (𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → 𝐶 < 𝐵))
5352orim2d 778 . 2 (𝜑 → ((𝐶 < 𝐴𝐴 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)) → (𝐶 < 𝐴𝐶 < 𝐵)))
5414, 53mpd 13 1 (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cmin 8069   / cdiv 8568  2c2 8908  +crp 9589  abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  maxabslemval  11150  maxleastlt  11157
  Copyright terms: Public domain W3C validator