| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | GIF version | ||
| Description: Proof of (biconditional form of) nn0suc 4695 from the core axioms of CZF. See also bj-nn0sucALT 16299. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nn0suc | ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nn0suc0 16271 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | |
| 2 | bj-omtrans 16277 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
| 3 | ssrexv 3289 | . . . . 5 ⊢ (𝐴 ⊆ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 5 | 4 | orim2d 793 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 6 | 1, 5 | mpd 13 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 7 | peano1 4685 | . . . 4 ⊢ ∅ ∈ ω | |
| 8 | eleq1 2292 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω)) | |
| 9 | 7, 8 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ ω) |
| 10 | bj-peano2 16260 | . . . . 5 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 11 | eleq1a 2301 | . . . . . 6 ⊢ (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥 → 𝐴 ∈ ω)) | |
| 12 | 11 | imp 124 | . . . . 5 ⊢ ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 13 | 10, 12 | sylan 283 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 14 | 13 | rexlimiva 2643 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → 𝐴 ∈ ω) |
| 15 | 9, 14 | jaoi 721 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 16 | 6, 15 | impbii 126 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 suc csuc 4455 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4209 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdim 16135 ax-bdan 16136 ax-bdor 16137 ax-bdn 16138 ax-bdal 16139 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 ax-infvn 16262 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-bdc 16162 df-bj-ind 16248 |
| This theorem is referenced by: bj-findis 16300 |
| Copyright terms: Public domain | W3C validator |