| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | GIF version | ||
| Description: Proof of (biconditional form of) nn0suc 4660 from the core axioms of CZF. See also bj-nn0sucALT 16052. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nn0suc | ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nn0suc0 16024 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | |
| 2 | bj-omtrans 16030 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
| 3 | ssrexv 3262 | . . . . 5 ⊢ (𝐴 ⊆ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 5 | 4 | orim2d 790 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 6 | 1, 5 | mpd 13 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 7 | peano1 4650 | . . . 4 ⊢ ∅ ∈ ω | |
| 8 | eleq1 2269 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω)) | |
| 9 | 7, 8 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ ω) |
| 10 | bj-peano2 16013 | . . . . 5 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 11 | eleq1a 2278 | . . . . . 6 ⊢ (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥 → 𝐴 ∈ ω)) | |
| 12 | 11 | imp 124 | . . . . 5 ⊢ ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 13 | 10, 12 | sylan 283 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 14 | 13 | rexlimiva 2619 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → 𝐴 ∈ ω) |
| 15 | 9, 14 | jaoi 718 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 16 | 6, 15 | impbii 126 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3170 ∅c0 3464 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-nul 4178 ax-pr 4261 ax-un 4488 ax-bd0 15887 ax-bdim 15888 ax-bdan 15889 ax-bdor 15890 ax-bdn 15891 ax-bdal 15892 ax-bdex 15893 ax-bdeq 15894 ax-bdel 15895 ax-bdsb 15896 ax-bdsep 15958 ax-infvn 16015 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 df-bdc 15915 df-bj-ind 16001 |
| This theorem is referenced by: bj-findis 16053 |
| Copyright terms: Public domain | W3C validator |