Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc GIF version

Theorem bj-nn0suc 15526
Description: Proof of (biconditional form of) nn0suc 4637 from the core axioms of CZF. See also bj-nn0sucALT 15540. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 15512 . . 3 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
2 bj-omtrans 15518 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
3 ssrexv 3245 . . . . 5 (𝐴 ⊆ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
42, 3syl 14 . . . 4 (𝐴 ∈ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
54orim2d 789 . . 3 (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
61, 5mpd 13 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
7 peano1 4627 . . . 4 ∅ ∈ ω
8 eleq1 2256 . . . 4 (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω))
97, 8mpbiri 168 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
10 bj-peano2 15501 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
11 eleq1a 2265 . . . . . 6 (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥𝐴 ∈ ω))
1211imp 124 . . . . 5 ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1310, 12sylan 283 . . . 4 ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1413rexlimiva 2606 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥𝐴 ∈ ω)
159, 14jaoi 717 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
166, 15impbii 126 1 (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2164  wrex 2473  wss 3154  c0 3447  suc csuc 4397  ωcom 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4156  ax-pr 4239  ax-un 4465  ax-bd0 15375  ax-bdim 15376  ax-bdan 15377  ax-bdor 15378  ax-bdn 15379  ax-bdal 15380  ax-bdex 15381  ax-bdeq 15382  ax-bdel 15383  ax-bdsb 15384  ax-bdsep 15446  ax-infvn 15503
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624  df-bdc 15403  df-bj-ind 15489
This theorem is referenced by:  bj-findis  15541
  Copyright terms: Public domain W3C validator