Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | GIF version |
Description: Proof of (biconditional form of) nn0suc 4581 from the core axioms of CZF. See also bj-nn0sucALT 13870. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nn0suc | ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nn0suc0 13842 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | |
2 | bj-omtrans 13848 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
3 | ssrexv 3207 | . . . . 5 ⊢ (𝐴 ⊆ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
5 | 4 | orim2d 778 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
6 | 1, 5 | mpd 13 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
7 | peano1 4571 | . . . 4 ⊢ ∅ ∈ ω | |
8 | eleq1 2229 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω)) | |
9 | 7, 8 | mpbiri 167 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ ω) |
10 | bj-peano2 13831 | . . . . 5 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
11 | eleq1a 2238 | . . . . . 6 ⊢ (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥 → 𝐴 ∈ ω)) | |
12 | 11 | imp 123 | . . . . 5 ⊢ ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
13 | 10, 12 | sylan 281 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
14 | 13 | rexlimiva 2578 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → 𝐴 ∈ ω) |
15 | 9, 14 | jaoi 706 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
16 | 6, 15 | impbii 125 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 ∅c0 3409 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13705 ax-bdim 13706 ax-bdan 13707 ax-bdor 13708 ax-bdn 13709 ax-bdal 13710 ax-bdex 13711 ax-bdeq 13712 ax-bdel 13713 ax-bdsb 13714 ax-bdsep 13776 ax-infvn 13833 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13733 df-bj-ind 13819 |
This theorem is referenced by: bj-findis 13871 |
Copyright terms: Public domain | W3C validator |