![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | GIF version |
Description: Proof of (biconditional form of) nn0suc 4603 from the core axioms of CZF. See also bj-nn0sucALT 14666. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nn0suc | ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nn0suc0 14638 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | |
2 | bj-omtrans 14644 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | |
3 | ssrexv 3220 | . . . . 5 ⊢ (𝐴 ⊆ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
5 | 4 | orim2d 788 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
6 | 1, 5 | mpd 13 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
7 | peano1 4593 | . . . 4 ⊢ ∅ ∈ ω | |
8 | eleq1 2240 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω)) | |
9 | 7, 8 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ ω) |
10 | bj-peano2 14627 | . . . . 5 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
11 | eleq1a 2249 | . . . . . 6 ⊢ (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥 → 𝐴 ∈ ω)) | |
12 | 11 | imp 124 | . . . . 5 ⊢ ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
13 | 10, 12 | sylan 283 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
14 | 13 | rexlimiva 2589 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → 𝐴 ∈ ω) |
15 | 9, 14 | jaoi 716 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
16 | 6, 15 | impbii 126 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3129 ∅c0 3422 suc csuc 4365 ωcom 4589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4129 ax-pr 4209 ax-un 4433 ax-bd0 14501 ax-bdim 14502 ax-bdan 14503 ax-bdor 14504 ax-bdn 14505 ax-bdal 14506 ax-bdex 14507 ax-bdeq 14508 ax-bdel 14509 ax-bdsb 14510 ax-bdsep 14572 ax-infvn 14629 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-sn 3598 df-pr 3599 df-uni 3810 df-int 3845 df-suc 4371 df-iom 4590 df-bdc 14529 df-bj-ind 14615 |
This theorem is referenced by: bj-findis 14667 |
Copyright terms: Public domain | W3C validator |