Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc GIF version

Theorem bj-nn0suc 15764
Description: Proof of (biconditional form of) nn0suc 4650 from the core axioms of CZF. See also bj-nn0sucALT 15778. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 15750 . . 3 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
2 bj-omtrans 15756 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
3 ssrexv 3257 . . . . 5 (𝐴 ⊆ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
42, 3syl 14 . . . 4 (𝐴 ∈ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
54orim2d 789 . . 3 (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
61, 5mpd 13 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
7 peano1 4640 . . . 4 ∅ ∈ ω
8 eleq1 2267 . . . 4 (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω))
97, 8mpbiri 168 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
10 bj-peano2 15739 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
11 eleq1a 2276 . . . . . 6 (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥𝐴 ∈ ω))
1211imp 124 . . . . 5 ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1310, 12sylan 283 . . . 4 ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1413rexlimiva 2617 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥𝐴 ∈ ω)
159, 14jaoi 717 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
166, 15impbii 126 1 (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1372  wcel 2175  wrex 2484  wss 3165  c0 3459  suc csuc 4410  ωcom 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4478  ax-bd0 15613  ax-bdim 15614  ax-bdan 15615  ax-bdor 15616  ax-bdn 15617  ax-bdal 15618  ax-bdex 15619  ax-bdeq 15620  ax-bdel 15621  ax-bdsb 15622  ax-bdsep 15684  ax-infvn 15741
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4416  df-iom 4637  df-bdc 15641  df-bj-ind 15727
This theorem is referenced by:  bj-findis  15779
  Copyright terms: Public domain W3C validator