Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc GIF version

Theorem bj-nn0suc 13999
Description: Proof of (biconditional form of) nn0suc 4588 from the core axioms of CZF. See also bj-nn0sucALT 14013. As a characterization of the elements of ω, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 13985 . . 3 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
2 bj-omtrans 13991 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
3 ssrexv 3212 . . . . 5 (𝐴 ⊆ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
42, 3syl 14 . . . 4 (𝐴 ∈ ω → (∃𝑥𝐴 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
54orim2d 783 . . 3 (𝐴 ∈ ω → ((𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
61, 5mpd 13 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
7 peano1 4578 . . . 4 ∅ ∈ ω
8 eleq1 2233 . . . 4 (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω))
97, 8mpbiri 167 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
10 bj-peano2 13974 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
11 eleq1a 2242 . . . . . 6 (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥𝐴 ∈ ω))
1211imp 123 . . . . 5 ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1310, 12sylan 281 . . . 4 ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
1413rexlimiva 2582 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥𝐴 ∈ ω)
159, 14jaoi 711 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
166, 15impbii 125 1 (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703   = wceq 1348  wcel 2141  wrex 2449  wss 3121  c0 3414  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdim 13849  ax-bdan 13850  ax-bdor 13851  ax-bdn 13852  ax-bdal 13853  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-findis  14014
  Copyright terms: Public domain W3C validator