| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid1dc | GIF version | ||
| Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4276 or ordtriexmid 4610. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
| Ref | Expression |
|---|---|
| exmid1dc.x | ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
| Ref | Expression |
|---|---|
| exmid1dc | ⊢ (𝜑 → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid1dc.x | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) | |
| 2 | exmiddc 841 | . . . . . . 7 ⊢ (DECID 𝑥 = {∅} → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) | |
| 3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) |
| 4 | df-ne 2401 | . . . . . . . . 9 ⊢ (𝑥 ≠ {∅} ↔ ¬ 𝑥 = {∅}) | |
| 5 | pwntru 4282 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ {∅} ∧ 𝑥 ≠ {∅}) → 𝑥 = ∅) | |
| 6 | 5 | ex 115 | . . . . . . . . 9 ⊢ (𝑥 ⊆ {∅} → (𝑥 ≠ {∅} → 𝑥 = ∅)) |
| 7 | 4, 6 | biimtrrid 153 | . . . . . . . 8 ⊢ (𝑥 ⊆ {∅} → (¬ 𝑥 = {∅} → 𝑥 = ∅)) |
| 8 | 7 | orim2d 793 | . . . . . . 7 ⊢ (𝑥 ⊆ {∅} → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
| 10 | 3, 9 | mpd 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)) |
| 11 | 10 | orcomd 734 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 12 | 11 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 13 | 12 | alrimiv 1920 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
| 14 | exmid01 4281 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
| 15 | 13, 14 | sylibr 134 | 1 ⊢ (𝜑 → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 ∀wal 1393 = wceq 1395 ≠ wne 2400 ⊆ wss 3197 ∅c0 3491 {csn 3666 EXMIDwem 4277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-exmid 4278 |
| This theorem is referenced by: pw1fin 7060 exmidonfin 7360 exmidaclem 7378 exmidontri 7412 exmidontri2or 7416 |
| Copyright terms: Public domain | W3C validator |