Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmid1dc | GIF version |
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4172 or ordtriexmid 4498. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmid1dc.x | ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
Ref | Expression |
---|---|
exmid1dc | ⊢ (𝜑 → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid1dc.x | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) | |
2 | exmiddc 826 | . . . . . . 7 ⊢ (DECID 𝑥 = {∅} → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) |
4 | df-ne 2337 | . . . . . . . . 9 ⊢ (𝑥 ≠ {∅} ↔ ¬ 𝑥 = {∅}) | |
5 | pwntru 4178 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ {∅} ∧ 𝑥 ≠ {∅}) → 𝑥 = ∅) | |
6 | 5 | ex 114 | . . . . . . . . 9 ⊢ (𝑥 ⊆ {∅} → (𝑥 ≠ {∅} → 𝑥 = ∅)) |
7 | 4, 6 | syl5bir 152 | . . . . . . . 8 ⊢ (𝑥 ⊆ {∅} → (¬ 𝑥 = {∅} → 𝑥 = ∅)) |
8 | 7 | orim2d 778 | . . . . . . 7 ⊢ (𝑥 ⊆ {∅} → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
9 | 8 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
10 | 3, 9 | mpd 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)) |
11 | 10 | orcomd 719 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
12 | 11 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
13 | 12 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
14 | exmid01 4177 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
15 | 13, 14 | sylibr 133 | 1 ⊢ (𝜑 → EXMID) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 ∀wal 1341 = wceq 1343 ≠ wne 2336 ⊆ wss 3116 ∅c0 3409 {csn 3576 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: pw1fin 6876 exmidonfin 7150 exmidaclem 7164 exmidontri 7195 exmidontri2or 7199 |
Copyright terms: Public domain | W3C validator |