ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid1dc GIF version

Theorem exmid1dc 4233
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4226 or ordtriexmid 4557. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypothesis
Ref Expression
exmid1dc.x ((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
Assertion
Ref Expression
exmid1dc (𝜑EXMID)
Distinct variable group:   𝜑,𝑥

Proof of Theorem exmid1dc
StepHypRef Expression
1 exmid1dc.x . . . . . . 7 ((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
2 exmiddc 837 . . . . . . 7 (DECID 𝑥 = {∅} → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅}))
31, 2syl 14 . . . . . 6 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅}))
4 df-ne 2368 . . . . . . . . 9 (𝑥 ≠ {∅} ↔ ¬ 𝑥 = {∅})
5 pwntru 4232 . . . . . . . . . 10 ((𝑥 ⊆ {∅} ∧ 𝑥 ≠ {∅}) → 𝑥 = ∅)
65ex 115 . . . . . . . . 9 (𝑥 ⊆ {∅} → (𝑥 ≠ {∅} → 𝑥 = ∅))
74, 6biimtrrid 153 . . . . . . . 8 (𝑥 ⊆ {∅} → (¬ 𝑥 = {∅} → 𝑥 = ∅))
87orim2d 789 . . . . . . 7 (𝑥 ⊆ {∅} → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)))
98adantl 277 . . . . . 6 ((𝜑𝑥 ⊆ {∅}) → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)))
103, 9mpd 13 . . . . 5 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))
1110orcomd 730 . . . 4 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1211ex 115 . . 3 (𝜑 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1312alrimiv 1888 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
14 exmid01 4231 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1513, 14sylibr 134 1 (𝜑EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wne 2367  wss 3157  c0 3450  {csn 3622  EXMIDwem 4227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-exmid 4228
This theorem is referenced by:  pw1fin  6971  exmidonfin  7261  exmidaclem  7275  exmidontri  7306  exmidontri2or  7310
  Copyright terms: Public domain W3C validator