ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid1dc GIF version

Theorem exmid1dc 4249
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4242 or ordtriexmid 4574. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypothesis
Ref Expression
exmid1dc.x ((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
Assertion
Ref Expression
exmid1dc (𝜑EXMID)
Distinct variable group:   𝜑,𝑥

Proof of Theorem exmid1dc
StepHypRef Expression
1 exmid1dc.x . . . . . . 7 ((𝜑𝑥 ⊆ {∅}) → DECID 𝑥 = {∅})
2 exmiddc 838 . . . . . . 7 (DECID 𝑥 = {∅} → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅}))
31, 2syl 14 . . . . . 6 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅}))
4 df-ne 2378 . . . . . . . . 9 (𝑥 ≠ {∅} ↔ ¬ 𝑥 = {∅})
5 pwntru 4248 . . . . . . . . . 10 ((𝑥 ⊆ {∅} ∧ 𝑥 ≠ {∅}) → 𝑥 = ∅)
65ex 115 . . . . . . . . 9 (𝑥 ⊆ {∅} → (𝑥 ≠ {∅} → 𝑥 = ∅))
74, 6biimtrrid 153 . . . . . . . 8 (𝑥 ⊆ {∅} → (¬ 𝑥 = {∅} → 𝑥 = ∅))
87orim2d 790 . . . . . . 7 (𝑥 ⊆ {∅} → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)))
98adantl 277 . . . . . 6 ((𝜑𝑥 ⊆ {∅}) → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)))
103, 9mpd 13 . . . . 5 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))
1110orcomd 731 . . . 4 ((𝜑𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
1211ex 115 . . 3 (𝜑 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1312alrimiv 1898 . 2 (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
14 exmid01 4247 . 2 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
1513, 14sylibr 134 1 (𝜑EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  wal 1371   = wceq 1373  wne 2377  wss 3168  c0 3462  {csn 3635  EXMIDwem 4243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4175
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3170  df-in 3174  df-ss 3181  df-nul 3463  df-sn 3641  df-exmid 4244
This theorem is referenced by:  pw1fin  7019  exmidonfin  7315  exmidaclem  7333  exmidontri  7364  exmidontri2or  7368
  Copyright terms: Public domain W3C validator