Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmid1dc | GIF version |
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4154 or ordtriexmid 4480. In this context 𝑥 = {∅} can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmid1dc.x | ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) |
Ref | Expression |
---|---|
exmid1dc | ⊢ (𝜑 → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid1dc.x | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → DECID 𝑥 = {∅}) | |
2 | exmiddc 822 | . . . . . . 7 ⊢ (DECID 𝑥 = {∅} → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ ¬ 𝑥 = {∅})) |
4 | df-ne 2328 | . . . . . . . . 9 ⊢ (𝑥 ≠ {∅} ↔ ¬ 𝑥 = {∅}) | |
5 | pwntru 4160 | . . . . . . . . . 10 ⊢ ((𝑥 ⊆ {∅} ∧ 𝑥 ≠ {∅}) → 𝑥 = ∅) | |
6 | 5 | ex 114 | . . . . . . . . 9 ⊢ (𝑥 ⊆ {∅} → (𝑥 ≠ {∅} → 𝑥 = ∅)) |
7 | 4, 6 | syl5bir 152 | . . . . . . . 8 ⊢ (𝑥 ⊆ {∅} → (¬ 𝑥 = {∅} → 𝑥 = ∅)) |
8 | 7 | orim2d 778 | . . . . . . 7 ⊢ (𝑥 ⊆ {∅} → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
9 | 8 | adantl 275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → ((𝑥 = {∅} ∨ ¬ 𝑥 = {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅))) |
10 | 3, 9 | mpd 13 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = {∅} ∨ 𝑥 = ∅)) |
11 | 10 | orcomd 719 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
12 | 11 | ex 114 | . . 3 ⊢ (𝜑 → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
13 | 12 | alrimiv 1854 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) |
14 | exmid01 4159 | . 2 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))) | |
15 | 13, 14 | sylibr 133 | 1 ⊢ (𝜑 → EXMID) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 ∀wal 1333 = wceq 1335 ≠ wne 2327 ⊆ wss 3102 ∅c0 3394 {csn 3560 EXMIDwem 4155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-nul 4090 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-exmid 4156 |
This theorem is referenced by: pw1fin 6855 exmidonfin 7129 exmidaclem 7143 exmidontri 7174 exmidontri2or 7178 |
Copyright terms: Public domain | W3C validator |