ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc GIF version

Theorem fodjuomnilemdc 7260
Description: Lemma for fodjuomni 7265. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
Assertion
Ref Expression
fodjuomnilemdc ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝑂   𝑧,𝑋   𝜑,𝑧

Proof of Theorem fodjuomnilemdc
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6 (𝜑𝐹:𝑂onto→(𝐴𝐵))
2 fof 5509 . . . . . 6 (𝐹:𝑂onto→(𝐴𝐵) → 𝐹:𝑂⟶(𝐴𝐵))
31, 2syl 14 . . . . 5 (𝜑𝐹:𝑂⟶(𝐴𝐵))
43ffvelcdmda 5727 . . . 4 ((𝜑𝑋𝑂) → (𝐹𝑋) ∈ (𝐴𝐵))
5 djur 7185 . . . 4 ((𝐹𝑋) ∈ (𝐴𝐵) ↔ (∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)))
64, 5sylib 122 . . 3 ((𝜑𝑋𝑂) → (∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)))
7 nfv 1552 . . . . . . . 8 𝑧(𝜑𝑋𝑂)
8 nfre1 2550 . . . . . . . 8 𝑧𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)
97, 8nfan 1589 . . . . . . 7 𝑧((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧))
10 simpr 110 . . . . . . . . . 10 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧))
11 fveq2 5588 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (inr‘𝑧) = (inr‘𝑤))
1211eqeq2d 2218 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑋) = (inr‘𝑧) ↔ (𝐹𝑋) = (inr‘𝑤)))
1312cbvrexv 2740 . . . . . . . . . 10 (∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧) ↔ ∃𝑤𝐵 (𝐹𝑋) = (inr‘𝑤))
1410, 13sylib 122 . . . . . . . . 9 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ∃𝑤𝐵 (𝐹𝑋) = (inr‘𝑤))
15 vex 2776 . . . . . . . . . . . . . . 15 𝑧 ∈ V
16 vex 2776 . . . . . . . . . . . . . . 15 𝑤 ∈ V
17 djune 7194 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → (inl‘𝑧) ≠ (inr‘𝑤))
1815, 16, 17mp2an 426 . . . . . . . . . . . . . 14 (inl‘𝑧) ≠ (inr‘𝑤)
19 neeq2 2391 . . . . . . . . . . . . . 14 ((𝐹𝑋) = (inr‘𝑤) → ((inl‘𝑧) ≠ (𝐹𝑋) ↔ (inl‘𝑧) ≠ (inr‘𝑤)))
2018, 19mpbiri 168 . . . . . . . . . . . . 13 ((𝐹𝑋) = (inr‘𝑤) → (inl‘𝑧) ≠ (𝐹𝑋))
2120necomd 2463 . . . . . . . . . . . 12 ((𝐹𝑋) = (inr‘𝑤) → (𝐹𝑋) ≠ (inl‘𝑧))
2221neneqd 2398 . . . . . . . . . . 11 ((𝐹𝑋) = (inr‘𝑤) → ¬ (𝐹𝑋) = (inl‘𝑧))
2322a1i 9 . . . . . . . . . 10 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ((𝐹𝑋) = (inr‘𝑤) → ¬ (𝐹𝑋) = (inl‘𝑧)))
2423rexlimdvw 2628 . . . . . . . . 9 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → (∃𝑤𝐵 (𝐹𝑋) = (inr‘𝑤) → ¬ (𝐹𝑋) = (inl‘𝑧)))
2514, 24mpd 13 . . . . . . . 8 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ¬ (𝐹𝑋) = (inl‘𝑧))
2625a1d 22 . . . . . . 7 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → (𝑧𝐴 → ¬ (𝐹𝑋) = (inl‘𝑧)))
279, 26ralrimi 2578 . . . . . 6 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ∀𝑧𝐴 ¬ (𝐹𝑋) = (inl‘𝑧))
28 ralnex 2495 . . . . . 6 (∀𝑧𝐴 ¬ (𝐹𝑋) = (inl‘𝑧) ↔ ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
2927, 28sylib 122 . . . . 5 (((𝜑𝑋𝑂) ∧ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
3029ex 115 . . . 4 ((𝜑𝑋𝑂) → (∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧) → ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧)))
3130orim2d 790 . . 3 ((𝜑𝑋𝑂) → ((∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ∃𝑧𝐵 (𝐹𝑋) = (inr‘𝑧)) → (∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))))
326, 31mpd 13 . 2 ((𝜑𝑋𝑂) → (∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧)))
33 df-dc 837 . 2 (DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ↔ (∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧) ∨ ¬ ∃𝑧𝐴 (𝐹𝑋) = (inl‘𝑧)))
3432, 33sylibr 134 1 ((𝜑𝑋𝑂) → DECID𝑧𝐴 (𝐹𝑋) = (inl‘𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  wral 2485  wrex 2486  Vcvv 2773  wf 5275  ontowfo 5277  cfv 5279  cdju 7153  inlcinl 7161  inrcinr 7162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-1st 6238  df-2nd 6239  df-1o 6514  df-dju 7154  df-inl 7163  df-inr 7164
This theorem is referenced by:  fodjuf  7261  fodjum  7262  fodju0  7263
  Copyright terms: Public domain W3C validator