ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc GIF version

Theorem fodjuomnilemdc 7141
Description: Lemma for fodjuomni 7146. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
Assertion
Ref Expression
fodjuomnilemdc ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐡   𝑧,𝐹   𝑧,𝑂   𝑧,𝑋   πœ‘,𝑧

Proof of Theorem fodjuomnilemdc
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6 (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
2 fof 5438 . . . . . 6 (𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡) β†’ 𝐹:π‘‚βŸΆ(𝐴 βŠ” 𝐡))
31, 2syl 14 . . . . 5 (πœ‘ β†’ 𝐹:π‘‚βŸΆ(𝐴 βŠ” 𝐡))
43ffvelcdmda 5651 . . . 4 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (πΉβ€˜π‘‹) ∈ (𝐴 βŠ” 𝐡))
5 djur 7067 . . . 4 ((πΉβ€˜π‘‹) ∈ (𝐴 βŠ” 𝐡) ↔ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)))
64, 5sylib 122 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)))
7 nfv 1528 . . . . . . . 8 Ⅎ𝑧(πœ‘ ∧ 𝑋 ∈ 𝑂)
8 nfre1 2520 . . . . . . . 8 β„²π‘§βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)
97, 8nfan 1565 . . . . . . 7 Ⅎ𝑧((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§))
10 simpr 110 . . . . . . . . . 10 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§))
11 fveq2 5515 . . . . . . . . . . . 12 (𝑧 = 𝑀 β†’ (inrβ€˜π‘§) = (inrβ€˜π‘€))
1211eqeq2d 2189 . . . . . . . . . . 11 (𝑧 = 𝑀 β†’ ((πΉβ€˜π‘‹) = (inrβ€˜π‘§) ↔ (πΉβ€˜π‘‹) = (inrβ€˜π‘€)))
1312cbvrexv 2704 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§) ↔ βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€))
1410, 13sylib 122 . . . . . . . . 9 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€))
15 vex 2740 . . . . . . . . . . . . . . 15 𝑧 ∈ V
16 vex 2740 . . . . . . . . . . . . . . 15 𝑀 ∈ V
17 djune 7076 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ 𝑀 ∈ V) β†’ (inlβ€˜π‘§) β‰  (inrβ€˜π‘€))
1815, 16, 17mp2an 426 . . . . . . . . . . . . . 14 (inlβ€˜π‘§) β‰  (inrβ€˜π‘€)
19 neeq2 2361 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ ((inlβ€˜π‘§) β‰  (πΉβ€˜π‘‹) ↔ (inlβ€˜π‘§) β‰  (inrβ€˜π‘€)))
2018, 19mpbiri 168 . . . . . . . . . . . . 13 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ (inlβ€˜π‘§) β‰  (πΉβ€˜π‘‹))
2120necomd 2433 . . . . . . . . . . . 12 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ (πΉβ€˜π‘‹) β‰  (inlβ€˜π‘§))
2221neneqd 2368 . . . . . . . . . . 11 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2322a1i 9 . . . . . . . . . 10 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
2423rexlimdvw 2598 . . . . . . . . 9 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
2514, 24mpd 13 . . . . . . . 8 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2625a1d 22 . . . . . . 7 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (𝑧 ∈ 𝐴 β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
279, 26ralrimi 2548 . . . . . 6 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆ€π‘§ ∈ 𝐴 Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
28 ralnex 2465 . . . . . 6 (βˆ€π‘§ ∈ 𝐴 Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ↔ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2927, 28sylib 122 . . . . 5 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
3029ex 115 . . . 4 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§) β†’ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
3130orim2d 788 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ ((βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))))
326, 31mpd 13 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
33 df-dc 835 . 2 (DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ↔ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
3432, 33sylibr 134 1 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ∨ wo 708  DECID wdc 834   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2737  βŸΆwf 5212  β€“ontoβ†’wfo 5214  β€˜cfv 5216   βŠ” cdju 7035  inlcinl 7043  inrcinr 7044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1st 6140  df-2nd 6141  df-1o 6416  df-dju 7036  df-inl 7045  df-inr 7046
This theorem is referenced by:  fodjuf  7142  fodjum  7143  fodju0  7144
  Copyright terms: Public domain W3C validator