ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc GIF version

Theorem fodjuomnilemdc 7155
Description: Lemma for fodjuomni 7160. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
Assertion
Ref Expression
fodjuomnilemdc ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐡   𝑧,𝐹   𝑧,𝑂   𝑧,𝑋   πœ‘,𝑧

Proof of Theorem fodjuomnilemdc
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6 (πœ‘ β†’ 𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡))
2 fof 5450 . . . . . 6 (𝐹:𝑂–ontoβ†’(𝐴 βŠ” 𝐡) β†’ 𝐹:π‘‚βŸΆ(𝐴 βŠ” 𝐡))
31, 2syl 14 . . . . 5 (πœ‘ β†’ 𝐹:π‘‚βŸΆ(𝐴 βŠ” 𝐡))
43ffvelcdmda 5664 . . . 4 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (πΉβ€˜π‘‹) ∈ (𝐴 βŠ” 𝐡))
5 djur 7081 . . . 4 ((πΉβ€˜π‘‹) ∈ (𝐴 βŠ” 𝐡) ↔ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)))
64, 5sylib 122 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)))
7 nfv 1538 . . . . . . . 8 Ⅎ𝑧(πœ‘ ∧ 𝑋 ∈ 𝑂)
8 nfre1 2530 . . . . . . . 8 β„²π‘§βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)
97, 8nfan 1575 . . . . . . 7 Ⅎ𝑧((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§))
10 simpr 110 . . . . . . . . . 10 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§))
11 fveq2 5527 . . . . . . . . . . . 12 (𝑧 = 𝑀 β†’ (inrβ€˜π‘§) = (inrβ€˜π‘€))
1211eqeq2d 2199 . . . . . . . . . . 11 (𝑧 = 𝑀 β†’ ((πΉβ€˜π‘‹) = (inrβ€˜π‘§) ↔ (πΉβ€˜π‘‹) = (inrβ€˜π‘€)))
1312cbvrexv 2716 . . . . . . . . . 10 (βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§) ↔ βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€))
1410, 13sylib 122 . . . . . . . . 9 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€))
15 vex 2752 . . . . . . . . . . . . . . 15 𝑧 ∈ V
16 vex 2752 . . . . . . . . . . . . . . 15 𝑀 ∈ V
17 djune 7090 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ 𝑀 ∈ V) β†’ (inlβ€˜π‘§) β‰  (inrβ€˜π‘€))
1815, 16, 17mp2an 426 . . . . . . . . . . . . . 14 (inlβ€˜π‘§) β‰  (inrβ€˜π‘€)
19 neeq2 2371 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ ((inlβ€˜π‘§) β‰  (πΉβ€˜π‘‹) ↔ (inlβ€˜π‘§) β‰  (inrβ€˜π‘€)))
2018, 19mpbiri 168 . . . . . . . . . . . . 13 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ (inlβ€˜π‘§) β‰  (πΉβ€˜π‘‹))
2120necomd 2443 . . . . . . . . . . . 12 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ (πΉβ€˜π‘‹) β‰  (inlβ€˜π‘§))
2221neneqd 2378 . . . . . . . . . . 11 ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2322a1i 9 . . . . . . . . . 10 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ ((πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
2423rexlimdvw 2608 . . . . . . . . 9 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (βˆƒπ‘€ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘€) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
2514, 24mpd 13 . . . . . . . 8 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2625a1d 22 . . . . . . 7 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (𝑧 ∈ 𝐴 β†’ Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
279, 26ralrimi 2558 . . . . . 6 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ βˆ€π‘§ ∈ 𝐴 Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
28 ralnex 2475 . . . . . 6 (βˆ€π‘§ ∈ 𝐴 Β¬ (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ↔ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
2927, 28sylib 122 . . . . 5 (((πœ‘ ∧ 𝑋 ∈ 𝑂) ∧ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
3029ex 115 . . . 4 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§) β†’ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
3130orim2d 789 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ ((βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 (πΉβ€˜π‘‹) = (inrβ€˜π‘§)) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))))
326, 31mpd 13 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
33 df-dc 836 . 2 (DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ↔ (βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§) ∨ Β¬ βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§)))
3432, 33sylibr 134 1 ((πœ‘ ∧ 𝑋 ∈ 𝑂) β†’ DECID βˆƒπ‘§ ∈ 𝐴 (πΉβ€˜π‘‹) = (inlβ€˜π‘§))
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ∨ wo 709  DECID wdc 835   = wceq 1363   ∈ wcel 2158   β‰  wne 2357  βˆ€wral 2465  βˆƒwrex 2466  Vcvv 2749  βŸΆwf 5224  β€“ontoβ†’wfo 5226  β€˜cfv 5228   βŠ” cdju 7049  inlcinl 7057  inrcinr 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1st 6154  df-2nd 6155  df-1o 6430  df-dju 7050  df-inl 7059  df-inr 7060
This theorem is referenced by:  fodjuf  7156  fodjum  7157  fodju0  7158
  Copyright terms: Public domain W3C validator