ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor GIF version

Theorem nneoor 8947
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneoor
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5697 . . . . . 6 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
21oveq1d 5705 . . . . 5 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
32eleq1d 2163 . . . 4 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
4 oveq1 5697 . . . . 5 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
54eleq1d 2163 . . . 4 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
63, 5orbi12d 745 . . 3 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
7 oveq1 5697 . . . . . 6 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
87oveq1d 5705 . . . . 5 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
98eleq1d 2163 . . . 4 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
10 oveq1 5697 . . . . 5 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
1110eleq1d 2163 . . . 4 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
129, 11orbi12d 745 . . 3 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
13 oveq1 5697 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1413oveq1d 5705 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
1514eleq1d 2163 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
16 oveq1 5697 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
1716eleq1d 2163 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
1815, 17orbi12d 745 . . 3 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
19 oveq1 5697 . . . . . 6 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2019oveq1d 5705 . . . . 5 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
2120eleq1d 2163 . . . 4 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
22 oveq1 5697 . . . . 5 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
2322eleq1d 2163 . . . 4 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
2421, 23orbi12d 745 . . 3 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
25 df-2 8579 . . . . . . 7 2 = (1 + 1)
2625oveq1i 5700 . . . . . 6 (2 / 2) = ((1 + 1) / 2)
27 2div2e1 8646 . . . . . 6 (2 / 2) = 1
2826, 27eqtr3i 2117 . . . . 5 ((1 + 1) / 2) = 1
29 1nn 8531 . . . . 5 1 ∈ ℕ
3028, 29eqeltri 2167 . . . 4 ((1 + 1) / 2) ∈ ℕ
3130orci 688 . . 3 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
32 peano2nn 8532 . . . . . 6 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
33 nncn 8528 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
34 add1p1 8763 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
3534oveq1d 5705 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
36 2cn 8591 . . . . . . . . . . 11 2 ∈ ℂ
37 2ap0 8613 . . . . . . . . . . . 12 2 # 0
3836, 37pm3.2i 267 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 # 0)
39 divdirap 8261 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4036, 38, 39mp3an23 1272 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4127oveq2i 5701 . . . . . . . . . 10 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
4240, 41syl6eq 2143 . . . . . . . . 9 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
4335, 42eqtrd 2127 . . . . . . . 8 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4433, 43syl 14 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4544eleq1d 2163 . . . . . 6 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
4632, 45syl5ibr 155 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
4746orim2d 740 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
48 orcom 685 . . . 4 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
4947, 48syl6ib 160 . . 3 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
506, 12, 18, 24, 31, 49nnind 8536 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
5150orcomd 686 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 667   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cc 7445  0cc0 7447  1c1 7448   + caddc 7450   # cap 8155   / cdiv 8236  cn 8520  2c2 8571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579
This theorem is referenced by:  nneo  8948  zeo  8950
  Copyright terms: Public domain W3C validator