| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑗 = 1 → (𝑗 + 1) = (1 + 1)) | 
| 2 | 1 | oveq1d 5937 | 
. . . . 5
⊢ (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2)) | 
| 3 | 2 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔
((1 + 1) / 2) ∈ ℕ)) | 
| 4 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑗 = 1 → (𝑗 / 2) = (1 / 2)) | 
| 5 | 4 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈
ℕ)) | 
| 6 | 3, 5 | orbi12d 794 | 
. . 3
⊢ (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨
(𝑗 / 2) ∈ ℕ)
↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈
ℕ))) | 
| 7 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1)) | 
| 8 | 7 | oveq1d 5937 | 
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2)) | 
| 9 | 8 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈
ℕ)) | 
| 10 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2)) | 
| 11 | 10 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈
ℕ)) | 
| 12 | 9, 11 | orbi12d 794 | 
. . 3
⊢ (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔
(((𝑘 + 1) / 2) ∈
ℕ ∨ (𝑘 / 2) ∈
ℕ))) | 
| 13 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1)) | 
| 14 | 13 | oveq1d 5937 | 
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2)) | 
| 15 | 14 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈
ℕ)) | 
| 16 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2)) | 
| 17 | 16 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈
ℕ)) | 
| 18 | 15, 17 | orbi12d 794 | 
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔
((((𝑘 + 1) + 1) / 2) ∈
ℕ ∨ ((𝑘 + 1) / 2)
∈ ℕ))) | 
| 19 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1)) | 
| 20 | 19 | oveq1d 5937 | 
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2)) | 
| 21 | 20 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈
ℕ)) | 
| 22 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2)) | 
| 23 | 22 | eleq1d 2265 | 
. . . 4
⊢ (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈
ℕ)) | 
| 24 | 21, 23 | orbi12d 794 | 
. . 3
⊢ (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔
(((𝑁 + 1) / 2) ∈
ℕ ∨ (𝑁 / 2) ∈
ℕ))) | 
| 25 |   | df-2 9049 | 
. . . . . . 7
⊢ 2 = (1 +
1) | 
| 26 | 25 | oveq1i 5932 | 
. . . . . 6
⊢ (2 / 2) =
((1 + 1) / 2) | 
| 27 |   | 2div2e1 9123 | 
. . . . . 6
⊢ (2 / 2) =
1 | 
| 28 | 26, 27 | eqtr3i 2219 | 
. . . . 5
⊢ ((1 + 1)
/ 2) = 1 | 
| 29 |   | 1nn 9001 | 
. . . . 5
⊢ 1 ∈
ℕ | 
| 30 | 28, 29 | eqeltri 2269 | 
. . . 4
⊢ ((1 + 1)
/ 2) ∈ ℕ | 
| 31 | 30 | orci 732 | 
. . 3
⊢ (((1 + 1)
/ 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ) | 
| 32 |   | peano2nn 9002 | 
. . . . . 6
⊢ ((𝑘 / 2) ∈ ℕ →
((𝑘 / 2) + 1) ∈
ℕ) | 
| 33 |   | nncn 8998 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) | 
| 34 |   | add1p1 9241 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2)) | 
| 35 | 34 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2)) | 
| 36 |   | 2cn 9061 | 
. . . . . . . . . . 11
⊢ 2 ∈
ℂ | 
| 37 |   | 2ap0 9083 | 
. . . . . . . . . . . 12
⊢ 2 #
0 | 
| 38 | 36, 37 | pm3.2i 272 | 
. . . . . . . . . . 11
⊢ (2 ∈
ℂ ∧ 2 # 0) | 
| 39 |   | divdirap 8724 | 
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℂ ∧ 2 ∈
ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2))) | 
| 40 | 36, 38, 39 | mp3an23 1340 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 /
2))) | 
| 41 | 27 | oveq2i 5933 | 
. . . . . . . . . 10
⊢ ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1) | 
| 42 | 40, 41 | eqtrdi 2245 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1)) | 
| 43 | 35, 42 | eqtrd 2229 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1)) | 
| 44 | 33, 43 | syl 14 | 
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1)) | 
| 45 | 44 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ
↔ ((𝑘 / 2) + 1) ∈
ℕ)) | 
| 46 | 32, 45 | imbitrrid 156 | 
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ →
(((𝑘 + 1) + 1) / 2) ∈
ℕ)) | 
| 47 | 46 | orim2d 789 | 
. . . 4
⊢ (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨
(𝑘 / 2) ∈ ℕ)
→ (((𝑘 + 1) / 2)
∈ ℕ ∨ (((𝑘 +
1) + 1) / 2) ∈ ℕ))) | 
| 48 |   | orcom 729 | 
. . . 4
⊢ ((((𝑘 + 1) / 2) ∈ ℕ ∨
(((𝑘 + 1) + 1) / 2) ∈
ℕ) ↔ ((((𝑘 + 1)
+ 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)) | 
| 49 | 47, 48 | imbitrdi 161 | 
. . 3
⊢ (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨
(𝑘 / 2) ∈ ℕ)
→ ((((𝑘 + 1) + 1) / 2)
∈ ℕ ∨ ((𝑘 +
1) / 2) ∈ ℕ))) | 
| 50 | 6, 12, 18, 24, 31, 49 | nnind 9006 | 
. 2
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨
(𝑁 / 2) ∈
ℕ)) | 
| 51 | 50 | orcomd 730 | 
1
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨
((𝑁 + 1) / 2) ∈
ℕ)) |