ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor GIF version

Theorem nneoor 9428
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneoor
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5929 . . . . . 6 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
21oveq1d 5937 . . . . 5 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
32eleq1d 2265 . . . 4 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
4 oveq1 5929 . . . . 5 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
54eleq1d 2265 . . . 4 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
63, 5orbi12d 794 . . 3 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
7 oveq1 5929 . . . . . 6 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
87oveq1d 5937 . . . . 5 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
98eleq1d 2265 . . . 4 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
10 oveq1 5929 . . . . 5 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
1110eleq1d 2265 . . . 4 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
129, 11orbi12d 794 . . 3 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
13 oveq1 5929 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1413oveq1d 5937 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
1514eleq1d 2265 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
16 oveq1 5929 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
1716eleq1d 2265 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
1815, 17orbi12d 794 . . 3 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
19 oveq1 5929 . . . . . 6 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2019oveq1d 5937 . . . . 5 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
2120eleq1d 2265 . . . 4 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
22 oveq1 5929 . . . . 5 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
2322eleq1d 2265 . . . 4 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
2421, 23orbi12d 794 . . 3 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
25 df-2 9049 . . . . . . 7 2 = (1 + 1)
2625oveq1i 5932 . . . . . 6 (2 / 2) = ((1 + 1) / 2)
27 2div2e1 9123 . . . . . 6 (2 / 2) = 1
2826, 27eqtr3i 2219 . . . . 5 ((1 + 1) / 2) = 1
29 1nn 9001 . . . . 5 1 ∈ ℕ
3028, 29eqeltri 2269 . . . 4 ((1 + 1) / 2) ∈ ℕ
3130orci 732 . . 3 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
32 peano2nn 9002 . . . . . 6 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
33 nncn 8998 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
34 add1p1 9241 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
3534oveq1d 5937 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
36 2cn 9061 . . . . . . . . . . 11 2 ∈ ℂ
37 2ap0 9083 . . . . . . . . . . . 12 2 # 0
3836, 37pm3.2i 272 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 # 0)
39 divdirap 8724 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4036, 38, 39mp3an23 1340 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4127oveq2i 5933 . . . . . . . . . 10 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
4240, 41eqtrdi 2245 . . . . . . . . 9 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
4335, 42eqtrd 2229 . . . . . . . 8 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4433, 43syl 14 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4544eleq1d 2265 . . . . . 6 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
4632, 45imbitrrid 156 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
4746orim2d 789 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
48 orcom 729 . . . 4 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
4947, 48imbitrdi 161 . . 3 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
506, 12, 18, 24, 31, 49nnind 9006 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
5150orcomd 730 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   # cap 8608   / cdiv 8699  cn 8990  2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049
This theorem is referenced by:  nneo  9429  zeo  9431
  Copyright terms: Public domain W3C validator