ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor GIF version

Theorem nneoor 9177
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneoor
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5789 . . . . . 6 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
21oveq1d 5797 . . . . 5 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
32eleq1d 2209 . . . 4 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
4 oveq1 5789 . . . . 5 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
54eleq1d 2209 . . . 4 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
63, 5orbi12d 783 . . 3 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
7 oveq1 5789 . . . . . 6 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
87oveq1d 5797 . . . . 5 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
98eleq1d 2209 . . . 4 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
10 oveq1 5789 . . . . 5 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
1110eleq1d 2209 . . . 4 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
129, 11orbi12d 783 . . 3 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
13 oveq1 5789 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1413oveq1d 5797 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
1514eleq1d 2209 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
16 oveq1 5789 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
1716eleq1d 2209 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
1815, 17orbi12d 783 . . 3 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
19 oveq1 5789 . . . . . 6 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2019oveq1d 5797 . . . . 5 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
2120eleq1d 2209 . . . 4 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
22 oveq1 5789 . . . . 5 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
2322eleq1d 2209 . . . 4 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
2421, 23orbi12d 783 . . 3 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
25 df-2 8803 . . . . . . 7 2 = (1 + 1)
2625oveq1i 5792 . . . . . 6 (2 / 2) = ((1 + 1) / 2)
27 2div2e1 8876 . . . . . 6 (2 / 2) = 1
2826, 27eqtr3i 2163 . . . . 5 ((1 + 1) / 2) = 1
29 1nn 8755 . . . . 5 1 ∈ ℕ
3028, 29eqeltri 2213 . . . 4 ((1 + 1) / 2) ∈ ℕ
3130orci 721 . . 3 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
32 peano2nn 8756 . . . . . 6 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
33 nncn 8752 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
34 add1p1 8993 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
3534oveq1d 5797 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
36 2cn 8815 . . . . . . . . . . 11 2 ∈ ℂ
37 2ap0 8837 . . . . . . . . . . . 12 2 # 0
3836, 37pm3.2i 270 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 # 0)
39 divdirap 8481 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4036, 38, 39mp3an23 1308 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4127oveq2i 5793 . . . . . . . . . 10 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
4240, 41eqtrdi 2189 . . . . . . . . 9 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
4335, 42eqtrd 2173 . . . . . . . 8 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4433, 43syl 14 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4544eleq1d 2209 . . . . . 6 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
4632, 45syl5ibr 155 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
4746orim2d 778 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
48 orcom 718 . . . 4 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
4947, 48syl6ib 160 . . 3 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
506, 12, 18, 24, 31, 49nnind 8760 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
5150orcomd 719 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1332  wcel 1481   class class class wbr 3937  (class class class)co 5782  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   # cap 8367   / cdiv 8456  cn 8744  2c2 8795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803
This theorem is referenced by:  nneo  9178  zeo  9180
  Copyright terms: Public domain W3C validator