ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor GIF version

Theorem nneoor 9422
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneoor
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5926 . . . . . 6 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
21oveq1d 5934 . . . . 5 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
32eleq1d 2262 . . . 4 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
4 oveq1 5926 . . . . 5 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
54eleq1d 2262 . . . 4 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
63, 5orbi12d 794 . . 3 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
7 oveq1 5926 . . . . . 6 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
87oveq1d 5934 . . . . 5 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
98eleq1d 2262 . . . 4 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
10 oveq1 5926 . . . . 5 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
1110eleq1d 2262 . . . 4 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
129, 11orbi12d 794 . . 3 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
13 oveq1 5926 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1413oveq1d 5934 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
1514eleq1d 2262 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
16 oveq1 5926 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
1716eleq1d 2262 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
1815, 17orbi12d 794 . . 3 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
19 oveq1 5926 . . . . . 6 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2019oveq1d 5934 . . . . 5 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
2120eleq1d 2262 . . . 4 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
22 oveq1 5926 . . . . 5 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
2322eleq1d 2262 . . . 4 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
2421, 23orbi12d 794 . . 3 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
25 df-2 9043 . . . . . . 7 2 = (1 + 1)
2625oveq1i 5929 . . . . . 6 (2 / 2) = ((1 + 1) / 2)
27 2div2e1 9117 . . . . . 6 (2 / 2) = 1
2826, 27eqtr3i 2216 . . . . 5 ((1 + 1) / 2) = 1
29 1nn 8995 . . . . 5 1 ∈ ℕ
3028, 29eqeltri 2266 . . . 4 ((1 + 1) / 2) ∈ ℕ
3130orci 732 . . 3 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
32 peano2nn 8996 . . . . . 6 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
33 nncn 8992 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
34 add1p1 9235 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
3534oveq1d 5934 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
36 2cn 9055 . . . . . . . . . . 11 2 ∈ ℂ
37 2ap0 9077 . . . . . . . . . . . 12 2 # 0
3836, 37pm3.2i 272 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 # 0)
39 divdirap 8718 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4036, 38, 39mp3an23 1340 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4127oveq2i 5930 . . . . . . . . . 10 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
4240, 41eqtrdi 2242 . . . . . . . . 9 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
4335, 42eqtrd 2226 . . . . . . . 8 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4433, 43syl 14 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4544eleq1d 2262 . . . . . 6 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
4632, 45imbitrrid 156 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
4746orim2d 789 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
48 orcom 729 . . . 4 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
4947, 48imbitrdi 161 . . 3 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
506, 12, 18, 24, 31, 49nnind 9000 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
5150orcomd 730 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   # cap 8602   / cdiv 8693  cn 8984  2c2 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043
This theorem is referenced by:  nneo  9423  zeo  9425
  Copyright terms: Public domain W3C validator