Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben GIF version

Theorem exmidunben 12011
 Description: If any unbounded set of positive integers is equinumerous to ℕ, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem exmidunben
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2694 . . . . . . . . . . 11 𝑦 ∈ V
21enref 6671 . . . . . . . . . 10 𝑦𝑦
3 2z 9135 . . . . . . . . . . 11 2 ∈ ℤ
4 uzennn 10269 . . . . . . . . . . 11 (2 ∈ ℤ → (ℤ‘2) ≈ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ≈ ℕ
6 djuen 7096 . . . . . . . . . 10 ((𝑦𝑦 ∧ (ℤ‘2) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ))
72, 5, 6mp2an 423 . . . . . . . . 9 (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ)
87ensymi 6688 . . . . . . . 8 (𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2))
9 zex 9116 . . . . . . . . . . 11 ℤ ∈ V
10 uzssz 9398 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℤ
119, 10ssexi 4076 . . . . . . . . . 10 (ℤ‘2) ∈ V
12 1re 7818 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1312ltnri 7909 . . . . . . . . . . . . . 14 ¬ 1 < 1
14 simplr 520 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑦 ⊆ {1})
15 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧𝑦)
1614, 15sseldd 3105 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 ∈ {1})
17 elsni 3552 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {1} → 𝑧 = 1)
1816, 17syl 14 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 = 1)
1918breq2d 3951 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → (1 < 𝑧 ↔ 1 < 1))
2013, 19mtbiri 665 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 1 < 𝑧)
21 eluz2gt1 9452 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 1 < 𝑧)
2220, 21nsyl 618 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 𝑧 ∈ (ℤ‘2))
2322ralrimiva 2510 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
24 disj 3418 . . . . . . . . . . 11 ((𝑦 ∩ (ℤ‘2)) = ∅ ↔ ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
2523, 24sylibr 133 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∩ (ℤ‘2)) = ∅)
26 endjudisj 7095 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (ℤ‘2) ∈ V ∧ (𝑦 ∩ (ℤ‘2)) = ∅) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
271, 11, 25, 26mp3an12i 1320 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
28 simpr 109 . . . . . . . . . . . 12 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ {1})
29 1nn 8784 . . . . . . . . . . . . 13 1 ∈ ℕ
30 snssi 3674 . . . . . . . . . . . . 13 (1 ∈ ℕ → {1} ⊆ ℕ)
3129, 30ax-mp 5 . . . . . . . . . . . 12 {1} ⊆ ℕ
3228, 31sstrdi 3116 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ ℕ)
33 2nn 8934 . . . . . . . . . . . 12 2 ∈ ℕ
34 uznnssnn 9428 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
3533, 34mp1i 10 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (ℤ‘2) ⊆ ℕ)
3632, 35unssd 3259 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ⊆ ℕ)
37 nfv 1509 . . . . . . . . . . . . . . . 16 𝑚 𝑥 ⊆ ℕ
38 nfra1 2471 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛
3937, 38nfan 1545 . . . . . . . . . . . . . . 15 𝑚(𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛)
40 nfv 1509 . . . . . . . . . . . . . . 15 𝑚 𝑥 ≈ ℕ
4139, 40nfim 1552 . . . . . . . . . . . . . 14 𝑚((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
4241nfal 1556 . . . . . . . . . . . . 13 𝑚𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
43 nfv 1509 . . . . . . . . . . . . 13 𝑚ω ∈ Omni
4442, 43nfan 1545 . . . . . . . . . . . 12 𝑚(∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni)
45 nfv 1509 . . . . . . . . . . . 12 𝑚 𝑦 ⊆ {1}
4644, 45nfan 1545 . . . . . . . . . . 11 𝑚((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1})
47 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4847peano2nnd 8788 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
4948nnzd 9225 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
50 0p1e1 8887 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
51 0red 7820 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 ∈ ℝ)
52 nnre 8780 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
53 1red 7834 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℝ)
54 nngt0 8798 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 < 𝑚)
5551, 52, 53, 54ltadd1dd 8371 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (0 + 1) < (𝑚 + 1))
5650, 55eqbrtrrid 3974 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < (𝑚 + 1))
5756adantl 275 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 1 < (𝑚 + 1))
58 eluz2b1 9451 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘2) ↔ ((𝑚 + 1) ∈ ℤ ∧ 1 < (𝑚 + 1)))
5949, 57, 58sylanbrc 414 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
60 elun2 3251 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (ℤ‘2) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6159, 60syl 14 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6247nnred 8786 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
6362ltp1d 8741 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 + 1))
64 breq2 3943 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑚 < 𝑛𝑚 < (𝑚 + 1)))
6564rspcev 2795 . . . . . . . . . . . . 13 (((𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)) ∧ 𝑚 < (𝑚 + 1)) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6661, 63, 65syl2anc 409 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6766ex 114 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑚 ∈ ℕ → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
6846, 67ralrimi 2508 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
691, 11unex 4373 . . . . . . . . . . . 12 (𝑦 ∪ (ℤ‘2)) ∈ V
70 sseq1 3127 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ⊆ ℕ))
71 rexeq 2632 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∃𝑛𝑥 𝑚 < 𝑛 ↔ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7271ralbidv 2440 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛 ↔ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7370, 72anbi12d 465 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → ((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) ↔ ((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)))
74 breq1 3942 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ≈ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7573, 74imbi12d 233 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ↔ (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)))
7669, 75spcv 2785 . . . . . . . . . . 11 (∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7776ad2antrr 480 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7836, 68, 77mp2and 430 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)
79 entr 6690 . . . . . . . . 9 (((𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)) ∧ (𝑦 ∪ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
8027, 78, 79syl2anc 409 . . . . . . . 8 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
81 entr 6690 . . . . . . . 8 (((𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2)) ∧ (𝑦 ⊔ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ ℕ) ≈ ℕ)
828, 80, 81sylancr 411 . . . . . . 7 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ ℕ) ≈ ℕ)
8382ensymd 6689 . . . . . 6 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ℕ ≈ (𝑦 ⊔ ℕ))
84 bren 6653 . . . . . 6 (ℕ ≈ (𝑦 ⊔ ℕ) ↔ ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
8583, 84sylib 121 . . . . 5 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
86 simpllr 524 . . . . . . . . 9 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ω ∈ Omni)
87 nnenom 10267 . . . . . . . . . 10 ℕ ≈ ω
88 enomni 7032 . . . . . . . . . 10 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
8987, 88ax-mp 5 . . . . . . . . 9 (ℕ ∈ Omni ↔ ω ∈ Omni)
9086, 89sylibr 133 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ℕ ∈ Omni)
91 f1ofo 5386 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9291adantl 275 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9390, 92fodjuomni 7042 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = ∅))
9493orcomd 719 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦))
95 simplr 520 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑦 ⊆ {1})
96 sssnm 3691 . . . . . . . 8 (∃𝑤 𝑤𝑦 → (𝑦 ⊆ {1} ↔ 𝑦 = {1}))
9795, 96syl5ibcom 154 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = {1}))
9897orim2d 778 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ((𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦) → (𝑦 = ∅ ∨ 𝑦 = {1})))
9994, 98mpd 13 . . . . 5 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ 𝑦 = {1}))
10085, 99exlimddv 1872 . . . 4 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 = ∅ ∨ 𝑦 = {1}))
101100ex 114 . . 3 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → (𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
102101alrimiv 1848 . 2 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
103 exmidsssnc 4137 . . 3 (1 ∈ ℕ → (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1}))))
10429, 103ax-mp 5 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
105102, 104sylibr 133 1 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698  ∀wal 1330   = wceq 1332  ∃wex 1469   ∈ wcel 1481  ∀wral 2418  ∃wrex 2419  Vcvv 2691   ∪ cun 3076   ∩ cin 3077   ⊆ wss 3078  ∅c0 3370  {csn 3534   class class class wbr 3939  EXMIDwem 4128  ωcom 4515  –onto→wfo 5133  –1-1-onto→wf1o 5134  ‘cfv 5135  (class class class)co 5786   ≈ cen 6644   ⊔ cdju 6939  Omnicomni 7027  0cc0 7673  1c1 7674   + caddc 7676   < clt 7853  ℕcn 8773  2c2 8824  ℤcz 9107  ℤ≥cuz 9379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-addcom 7773  ax-addass 7775  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-0id 7781  ax-rnegex 7782  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-ltadd 7789 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1738  df-eu 2004  df-mo 2005  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-if 3482  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-tr 4037  df-exmid 4129  df-id 4226  df-iord 4299  df-on 4301  df-ilim 4302  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-1st 6050  df-2nd 6051  df-recs 6214  df-frec 6300  df-1o 6325  df-2o 6326  df-er 6441  df-map 6556  df-en 6647  df-dju 6940  df-inl 6949  df-inr 6950  df-omni 7028  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-inn 8774  df-2 8832  df-n0 9031  df-z 9108  df-uz 9380 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator