ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben GIF version

Theorem exmidunben 12359
Description: If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem exmidunben
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . . . . . . 11 𝑦 ∈ V
21enref 6731 . . . . . . . . . 10 𝑦𝑦
3 2z 9219 . . . . . . . . . . 11 2 ∈ ℤ
4 uzennn 10371 . . . . . . . . . . 11 (2 ∈ ℤ → (ℤ‘2) ≈ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ≈ ℕ
6 djuen 7167 . . . . . . . . . 10 ((𝑦𝑦 ∧ (ℤ‘2) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ))
72, 5, 6mp2an 423 . . . . . . . . 9 (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ)
87ensymi 6748 . . . . . . . 8 (𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2))
9 zex 9200 . . . . . . . . . . 11 ℤ ∈ V
10 uzssz 9485 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℤ
119, 10ssexi 4120 . . . . . . . . . 10 (ℤ‘2) ∈ V
12 1re 7898 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1312ltnri 7991 . . . . . . . . . . . . . 14 ¬ 1 < 1
14 simplr 520 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑦 ⊆ {1})
15 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧𝑦)
1614, 15sseldd 3143 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 ∈ {1})
17 elsni 3594 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {1} → 𝑧 = 1)
1816, 17syl 14 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 = 1)
1918breq2d 3994 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → (1 < 𝑧 ↔ 1 < 1))
2013, 19mtbiri 665 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 1 < 𝑧)
21 eluz2gt1 9540 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 1 < 𝑧)
2220, 21nsyl 618 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 𝑧 ∈ (ℤ‘2))
2322ralrimiva 2539 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
24 disj 3457 . . . . . . . . . . 11 ((𝑦 ∩ (ℤ‘2)) = ∅ ↔ ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
2523, 24sylibr 133 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∩ (ℤ‘2)) = ∅)
26 endjudisj 7166 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (ℤ‘2) ∈ V ∧ (𝑦 ∩ (ℤ‘2)) = ∅) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
271, 11, 25, 26mp3an12i 1331 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
28 simpr 109 . . . . . . . . . . . 12 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ {1})
29 1nn 8868 . . . . . . . . . . . . 13 1 ∈ ℕ
30 snssi 3717 . . . . . . . . . . . . 13 (1 ∈ ℕ → {1} ⊆ ℕ)
3129, 30ax-mp 5 . . . . . . . . . . . 12 {1} ⊆ ℕ
3228, 31sstrdi 3154 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ ℕ)
33 2nn 9018 . . . . . . . . . . . 12 2 ∈ ℕ
34 uznnssnn 9515 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
3533, 34mp1i 10 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (ℤ‘2) ⊆ ℕ)
3632, 35unssd 3298 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ⊆ ℕ)
37 nfv 1516 . . . . . . . . . . . . . . . 16 𝑚 𝑥 ⊆ ℕ
38 nfra1 2497 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛
3937, 38nfan 1553 . . . . . . . . . . . . . . 15 𝑚(𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛)
40 nfv 1516 . . . . . . . . . . . . . . 15 𝑚 𝑥 ≈ ℕ
4139, 40nfim 1560 . . . . . . . . . . . . . 14 𝑚((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
4241nfal 1564 . . . . . . . . . . . . 13 𝑚𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
43 nfv 1516 . . . . . . . . . . . . 13 𝑚ω ∈ Omni
4442, 43nfan 1553 . . . . . . . . . . . 12 𝑚(∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni)
45 nfv 1516 . . . . . . . . . . . 12 𝑚 𝑦 ⊆ {1}
4644, 45nfan 1553 . . . . . . . . . . 11 𝑚((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1})
47 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4847peano2nnd 8872 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
4948nnzd 9312 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
50 0p1e1 8971 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
51 0red 7900 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 ∈ ℝ)
52 nnre 8864 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
53 1red 7914 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℝ)
54 nngt0 8882 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 < 𝑚)
5551, 52, 53, 54ltadd1dd 8454 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (0 + 1) < (𝑚 + 1))
5650, 55eqbrtrrid 4018 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < (𝑚 + 1))
5756adantl 275 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 1 < (𝑚 + 1))
58 eluz2b1 9539 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘2) ↔ ((𝑚 + 1) ∈ ℤ ∧ 1 < (𝑚 + 1)))
5949, 57, 58sylanbrc 414 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
60 elun2 3290 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (ℤ‘2) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6159, 60syl 14 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6247nnred 8870 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
6362ltp1d 8825 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 + 1))
64 breq2 3986 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑚 < 𝑛𝑚 < (𝑚 + 1)))
6564rspcev 2830 . . . . . . . . . . . . 13 (((𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)) ∧ 𝑚 < (𝑚 + 1)) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6661, 63, 65syl2anc 409 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6766ex 114 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑚 ∈ ℕ → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
6846, 67ralrimi 2537 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
691, 11unex 4419 . . . . . . . . . . . 12 (𝑦 ∪ (ℤ‘2)) ∈ V
70 sseq1 3165 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ⊆ ℕ))
71 rexeq 2662 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∃𝑛𝑥 𝑚 < 𝑛 ↔ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7271ralbidv 2466 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛 ↔ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7370, 72anbi12d 465 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → ((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) ↔ ((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)))
74 breq1 3985 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ≈ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7573, 74imbi12d 233 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ↔ (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)))
7669, 75spcv 2820 . . . . . . . . . . 11 (∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7776ad2antrr 480 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7836, 68, 77mp2and 430 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)
79 entr 6750 . . . . . . . . 9 (((𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)) ∧ (𝑦 ∪ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
8027, 78, 79syl2anc 409 . . . . . . . 8 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
81 entr 6750 . . . . . . . 8 (((𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2)) ∧ (𝑦 ⊔ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ ℕ) ≈ ℕ)
828, 80, 81sylancr 411 . . . . . . 7 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ ℕ) ≈ ℕ)
8382ensymd 6749 . . . . . 6 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ℕ ≈ (𝑦 ⊔ ℕ))
84 bren 6713 . . . . . 6 (ℕ ≈ (𝑦 ⊔ ℕ) ↔ ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
8583, 84sylib 121 . . . . 5 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
86 simpllr 524 . . . . . . . . 9 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ω ∈ Omni)
87 nnenom 10369 . . . . . . . . . 10 ℕ ≈ ω
88 enomni 7103 . . . . . . . . . 10 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
8987, 88ax-mp 5 . . . . . . . . 9 (ℕ ∈ Omni ↔ ω ∈ Omni)
9086, 89sylibr 133 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ℕ ∈ Omni)
91 f1ofo 5439 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9291adantl 275 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9390, 92fodjuomni 7113 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = ∅))
9493orcomd 719 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦))
95 simplr 520 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑦 ⊆ {1})
96 sssnm 3734 . . . . . . . 8 (∃𝑤 𝑤𝑦 → (𝑦 ⊆ {1} ↔ 𝑦 = {1}))
9795, 96syl5ibcom 154 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = {1}))
9897orim2d 778 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ((𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦) → (𝑦 = ∅ ∨ 𝑦 = {1})))
9994, 98mpd 13 . . . . 5 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ 𝑦 = {1}))
10085, 99exlimddv 1886 . . . 4 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 = ∅ ∨ 𝑦 = {1}))
101100ex 114 . . 3 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → (𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
102101alrimiv 1862 . 2 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
103 exmidsssnc 4182 . . 3 (1 ∈ ℕ → (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1}))))
10429, 103ax-mp 5 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
105102, 104sylibr 133 1 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  wal 1341   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576   class class class wbr 3982  EXMIDwem 4173  ωcom 4567  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cen 6704  cdju 7002  Omnicomni 7098  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cn 8857  2c2 8908  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-exmid 4174  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-map 6616  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013  df-omni 7099  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator