ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben GIF version

Theorem exmidunben 12381
Description: If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem exmidunben
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . . . . . 11 𝑦 ∈ V
21enref 6743 . . . . . . . . . 10 𝑦𝑦
3 2z 9240 . . . . . . . . . . 11 2 ∈ ℤ
4 uzennn 10392 . . . . . . . . . . 11 (2 ∈ ℤ → (ℤ‘2) ≈ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ≈ ℕ
6 djuen 7188 . . . . . . . . . 10 ((𝑦𝑦 ∧ (ℤ‘2) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ))
72, 5, 6mp2an 424 . . . . . . . . 9 (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ)
87ensymi 6760 . . . . . . . 8 (𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2))
9 zex 9221 . . . . . . . . . . 11 ℤ ∈ V
10 uzssz 9506 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℤ
119, 10ssexi 4127 . . . . . . . . . 10 (ℤ‘2) ∈ V
12 1re 7919 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1312ltnri 8012 . . . . . . . . . . . . . 14 ¬ 1 < 1
14 simplr 525 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑦 ⊆ {1})
15 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧𝑦)
1614, 15sseldd 3148 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 ∈ {1})
17 elsni 3601 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {1} → 𝑧 = 1)
1816, 17syl 14 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 = 1)
1918breq2d 4001 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → (1 < 𝑧 ↔ 1 < 1))
2013, 19mtbiri 670 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 1 < 𝑧)
21 eluz2gt1 9561 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 1 < 𝑧)
2220, 21nsyl 623 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 𝑧 ∈ (ℤ‘2))
2322ralrimiva 2543 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
24 disj 3463 . . . . . . . . . . 11 ((𝑦 ∩ (ℤ‘2)) = ∅ ↔ ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
2523, 24sylibr 133 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∩ (ℤ‘2)) = ∅)
26 endjudisj 7187 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (ℤ‘2) ∈ V ∧ (𝑦 ∩ (ℤ‘2)) = ∅) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
271, 11, 25, 26mp3an12i 1336 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
28 simpr 109 . . . . . . . . . . . 12 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ {1})
29 1nn 8889 . . . . . . . . . . . . 13 1 ∈ ℕ
30 snssi 3724 . . . . . . . . . . . . 13 (1 ∈ ℕ → {1} ⊆ ℕ)
3129, 30ax-mp 5 . . . . . . . . . . . 12 {1} ⊆ ℕ
3228, 31sstrdi 3159 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ ℕ)
33 2nn 9039 . . . . . . . . . . . 12 2 ∈ ℕ
34 uznnssnn 9536 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
3533, 34mp1i 10 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (ℤ‘2) ⊆ ℕ)
3632, 35unssd 3303 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ⊆ ℕ)
37 nfv 1521 . . . . . . . . . . . . . . . 16 𝑚 𝑥 ⊆ ℕ
38 nfra1 2501 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛
3937, 38nfan 1558 . . . . . . . . . . . . . . 15 𝑚(𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛)
40 nfv 1521 . . . . . . . . . . . . . . 15 𝑚 𝑥 ≈ ℕ
4139, 40nfim 1565 . . . . . . . . . . . . . 14 𝑚((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
4241nfal 1569 . . . . . . . . . . . . 13 𝑚𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
43 nfv 1521 . . . . . . . . . . . . 13 𝑚ω ∈ Omni
4442, 43nfan 1558 . . . . . . . . . . . 12 𝑚(∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni)
45 nfv 1521 . . . . . . . . . . . 12 𝑚 𝑦 ⊆ {1}
4644, 45nfan 1558 . . . . . . . . . . 11 𝑚((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1})
47 simpr 109 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4847peano2nnd 8893 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
4948nnzd 9333 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
50 0p1e1 8992 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
51 0red 7921 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 ∈ ℝ)
52 nnre 8885 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
53 1red 7935 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℝ)
54 nngt0 8903 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 < 𝑚)
5551, 52, 53, 54ltadd1dd 8475 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (0 + 1) < (𝑚 + 1))
5650, 55eqbrtrrid 4025 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < (𝑚 + 1))
5756adantl 275 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 1 < (𝑚 + 1))
58 eluz2b1 9560 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘2) ↔ ((𝑚 + 1) ∈ ℤ ∧ 1 < (𝑚 + 1)))
5949, 57, 58sylanbrc 415 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
60 elun2 3295 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (ℤ‘2) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6159, 60syl 14 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6247nnred 8891 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
6362ltp1d 8846 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 + 1))
64 breq2 3993 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑚 < 𝑛𝑚 < (𝑚 + 1)))
6564rspcev 2834 . . . . . . . . . . . . 13 (((𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)) ∧ 𝑚 < (𝑚 + 1)) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6661, 63, 65syl2anc 409 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6766ex 114 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑚 ∈ ℕ → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
6846, 67ralrimi 2541 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
691, 11unex 4426 . . . . . . . . . . . 12 (𝑦 ∪ (ℤ‘2)) ∈ V
70 sseq1 3170 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ⊆ ℕ))
71 rexeq 2666 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∃𝑛𝑥 𝑚 < 𝑛 ↔ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7271ralbidv 2470 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛 ↔ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7370, 72anbi12d 470 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → ((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) ↔ ((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)))
74 breq1 3992 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ≈ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7573, 74imbi12d 233 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ↔ (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)))
7669, 75spcv 2824 . . . . . . . . . . 11 (∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7776ad2antrr 485 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7836, 68, 77mp2and 431 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)
79 entr 6762 . . . . . . . . 9 (((𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)) ∧ (𝑦 ∪ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
8027, 78, 79syl2anc 409 . . . . . . . 8 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
81 entr 6762 . . . . . . . 8 (((𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2)) ∧ (𝑦 ⊔ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ ℕ) ≈ ℕ)
828, 80, 81sylancr 412 . . . . . . 7 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ ℕ) ≈ ℕ)
8382ensymd 6761 . . . . . 6 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ℕ ≈ (𝑦 ⊔ ℕ))
84 bren 6725 . . . . . 6 (ℕ ≈ (𝑦 ⊔ ℕ) ↔ ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
8583, 84sylib 121 . . . . 5 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
86 simpllr 529 . . . . . . . . 9 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ω ∈ Omni)
87 nnenom 10390 . . . . . . . . . 10 ℕ ≈ ω
88 enomni 7115 . . . . . . . . . 10 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
8987, 88ax-mp 5 . . . . . . . . 9 (ℕ ∈ Omni ↔ ω ∈ Omni)
9086, 89sylibr 133 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ℕ ∈ Omni)
91 f1ofo 5449 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9291adantl 275 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9390, 92fodjuomni 7125 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = ∅))
9493orcomd 724 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦))
95 simplr 525 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑦 ⊆ {1})
96 sssnm 3741 . . . . . . . 8 (∃𝑤 𝑤𝑦 → (𝑦 ⊆ {1} ↔ 𝑦 = {1}))
9795, 96syl5ibcom 154 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = {1}))
9897orim2d 783 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ((𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦) → (𝑦 = ∅ ∨ 𝑦 = {1})))
9994, 98mpd 13 . . . . 5 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ 𝑦 = {1}))
10085, 99exlimddv 1891 . . . 4 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 = ∅ ∨ 𝑦 = {1}))
101100ex 114 . . 3 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → (𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
102101alrimiv 1867 . 2 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
103 exmidsssnc 4189 . . 3 (1 ∈ ℕ → (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1}))))
10429, 103ax-mp 5 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
105102, 104sylibr 133 1 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  wal 1346   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583   class class class wbr 3989  EXMIDwem 4180  ωcom 4574  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cen 6716  cdju 7014  Omnicomni 7110  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cn 8878  2c2 8929  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-exmid 4181  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025  df-omni 7111  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator