ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben GIF version

Theorem exmidunben 12394
Description: If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem exmidunben
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . . . . . . . 11 𝑦 ∈ V
21enref 6755 . . . . . . . . . 10 𝑦𝑦
3 2z 9254 . . . . . . . . . . 11 2 ∈ ℤ
4 uzennn 10406 . . . . . . . . . . 11 (2 ∈ ℤ → (ℤ‘2) ≈ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ≈ ℕ
6 djuen 7200 . . . . . . . . . 10 ((𝑦𝑦 ∧ (ℤ‘2) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ))
72, 5, 6mp2an 426 . . . . . . . . 9 (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ)
87ensymi 6772 . . . . . . . 8 (𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2))
9 zex 9235 . . . . . . . . . . 11 ℤ ∈ V
10 uzssz 9520 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℤ
119, 10ssexi 4136 . . . . . . . . . 10 (ℤ‘2) ∈ V
12 1re 7931 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1312ltnri 8024 . . . . . . . . . . . . . 14 ¬ 1 < 1
14 simplr 528 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑦 ⊆ {1})
15 simpr 110 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧𝑦)
1614, 15sseldd 3154 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 ∈ {1})
17 elsni 3607 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {1} → 𝑧 = 1)
1816, 17syl 14 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 = 1)
1918breq2d 4010 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → (1 < 𝑧 ↔ 1 < 1))
2013, 19mtbiri 675 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 1 < 𝑧)
21 eluz2gt1 9575 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 1 < 𝑧)
2220, 21nsyl 628 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 𝑧 ∈ (ℤ‘2))
2322ralrimiva 2548 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
24 disj 3469 . . . . . . . . . . 11 ((𝑦 ∩ (ℤ‘2)) = ∅ ↔ ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
2523, 24sylibr 134 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∩ (ℤ‘2)) = ∅)
26 endjudisj 7199 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (ℤ‘2) ∈ V ∧ (𝑦 ∩ (ℤ‘2)) = ∅) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
271, 11, 25, 26mp3an12i 1341 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
28 simpr 110 . . . . . . . . . . . 12 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ {1})
29 1nn 8903 . . . . . . . . . . . . 13 1 ∈ ℕ
30 snssi 3733 . . . . . . . . . . . . 13 (1 ∈ ℕ → {1} ⊆ ℕ)
3129, 30ax-mp 5 . . . . . . . . . . . 12 {1} ⊆ ℕ
3228, 31sstrdi 3165 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ ℕ)
33 2nn 9053 . . . . . . . . . . . 12 2 ∈ ℕ
34 uznnssnn 9550 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
3533, 34mp1i 10 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (ℤ‘2) ⊆ ℕ)
3632, 35unssd 3309 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ⊆ ℕ)
37 nfv 1526 . . . . . . . . . . . . . . . 16 𝑚 𝑥 ⊆ ℕ
38 nfra1 2506 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛
3937, 38nfan 1563 . . . . . . . . . . . . . . 15 𝑚(𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛)
40 nfv 1526 . . . . . . . . . . . . . . 15 𝑚 𝑥 ≈ ℕ
4139, 40nfim 1570 . . . . . . . . . . . . . 14 𝑚((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
4241nfal 1574 . . . . . . . . . . . . 13 𝑚𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
43 nfv 1526 . . . . . . . . . . . . 13 𝑚ω ∈ Omni
4442, 43nfan 1563 . . . . . . . . . . . 12 𝑚(∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni)
45 nfv 1526 . . . . . . . . . . . 12 𝑚 𝑦 ⊆ {1}
4644, 45nfan 1563 . . . . . . . . . . 11 𝑚((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1})
47 simpr 110 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4847peano2nnd 8907 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
4948nnzd 9347 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
50 0p1e1 9006 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
51 0red 7933 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 ∈ ℝ)
52 nnre 8899 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
53 1red 7947 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℝ)
54 nngt0 8917 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 < 𝑚)
5551, 52, 53, 54ltadd1dd 8487 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (0 + 1) < (𝑚 + 1))
5650, 55eqbrtrrid 4034 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < (𝑚 + 1))
5756adantl 277 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 1 < (𝑚 + 1))
58 eluz2b1 9574 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘2) ↔ ((𝑚 + 1) ∈ ℤ ∧ 1 < (𝑚 + 1)))
5949, 57, 58sylanbrc 417 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
60 elun2 3301 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (ℤ‘2) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6159, 60syl 14 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6247nnred 8905 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
6362ltp1d 8860 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 + 1))
64 breq2 4002 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑚 < 𝑛𝑚 < (𝑚 + 1)))
6564rspcev 2839 . . . . . . . . . . . . 13 (((𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)) ∧ 𝑚 < (𝑚 + 1)) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6661, 63, 65syl2anc 411 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6766ex 115 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑚 ∈ ℕ → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
6846, 67ralrimi 2546 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
691, 11unex 4435 . . . . . . . . . . . 12 (𝑦 ∪ (ℤ‘2)) ∈ V
70 sseq1 3176 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ⊆ ℕ))
71 rexeq 2671 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∃𝑛𝑥 𝑚 < 𝑛 ↔ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7271ralbidv 2475 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛 ↔ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7370, 72anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → ((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) ↔ ((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)))
74 breq1 4001 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ≈ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7573, 74imbi12d 234 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ↔ (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)))
7669, 75spcv 2829 . . . . . . . . . . 11 (∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7776ad2antrr 488 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7836, 68, 77mp2and 433 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)
79 entr 6774 . . . . . . . . 9 (((𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)) ∧ (𝑦 ∪ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
8027, 78, 79syl2anc 411 . . . . . . . 8 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
81 entr 6774 . . . . . . . 8 (((𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2)) ∧ (𝑦 ⊔ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ ℕ) ≈ ℕ)
828, 80, 81sylancr 414 . . . . . . 7 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ ℕ) ≈ ℕ)
8382ensymd 6773 . . . . . 6 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ℕ ≈ (𝑦 ⊔ ℕ))
84 bren 6737 . . . . . 6 (ℕ ≈ (𝑦 ⊔ ℕ) ↔ ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
8583, 84sylib 122 . . . . 5 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
86 simpllr 534 . . . . . . . . 9 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ω ∈ Omni)
87 nnenom 10404 . . . . . . . . . 10 ℕ ≈ ω
88 enomni 7127 . . . . . . . . . 10 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
8987, 88ax-mp 5 . . . . . . . . 9 (ℕ ∈ Omni ↔ ω ∈ Omni)
9086, 89sylibr 134 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ℕ ∈ Omni)
91 f1ofo 5460 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9291adantl 277 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9390, 92fodjuomni 7137 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = ∅))
9493orcomd 729 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦))
95 simplr 528 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑦 ⊆ {1})
96 sssnm 3750 . . . . . . . 8 (∃𝑤 𝑤𝑦 → (𝑦 ⊆ {1} ↔ 𝑦 = {1}))
9795, 96syl5ibcom 155 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = {1}))
9897orim2d 788 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ((𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦) → (𝑦 = ∅ ∨ 𝑦 = {1})))
9994, 98mpd 13 . . . . 5 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ 𝑦 = {1}))
10085, 99exlimddv 1896 . . . 4 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 = ∅ ∨ 𝑦 = {1}))
101100ex 115 . . 3 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → (𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
102101alrimiv 1872 . 2 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
103 exmidsssnc 4198 . . 3 (1 ∈ ℕ → (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1}))))
10429, 103ax-mp 5 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
105102, 104sylibr 134 1 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wex 1490  wcel 2146  wral 2453  wrex 2454  Vcvv 2735  cun 3125  cin 3126  wss 3127  c0 3420  {csn 3589   class class class wbr 3998  EXMIDwem 4189  ωcom 4583  ontowfo 5206  1-1-ontowf1o 5207  cfv 5208  (class class class)co 5865  cen 6728  cdju 7026  Omnicomni 7122  0cc0 7786  1c1 7787   + caddc 7789   < clt 7966  cn 8892  2c2 8943  cz 9226  cuz 9501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-exmid 4190  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-1o 6407  df-2o 6408  df-er 6525  df-map 6640  df-en 6731  df-dju 7027  df-inl 7036  df-inr 7037  df-omni 7123  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-2 8951  df-n0 9150  df-z 9227  df-uz 9502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator