ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben GIF version

Theorem exmidunben 12480
Description: If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem exmidunben
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . . . . . . . 11 𝑦 ∈ V
21enref 6792 . . . . . . . . . 10 𝑦𝑦
3 2z 9312 . . . . . . . . . . 11 2 ∈ ℤ
4 uzennn 10469 . . . . . . . . . . 11 (2 ∈ ℤ → (ℤ‘2) ≈ ℕ)
53, 4ax-mp 5 . . . . . . . . . 10 (ℤ‘2) ≈ ℕ
6 djuen 7241 . . . . . . . . . 10 ((𝑦𝑦 ∧ (ℤ‘2) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ))
72, 5, 6mp2an 426 . . . . . . . . 9 (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ⊔ ℕ)
87ensymi 6809 . . . . . . . 8 (𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2))
9 zex 9293 . . . . . . . . . . 11 ℤ ∈ V
10 uzssz 9579 . . . . . . . . . . 11 (ℤ‘2) ⊆ ℤ
119, 10ssexi 4156 . . . . . . . . . 10 (ℤ‘2) ∈ V
12 1re 7987 . . . . . . . . . . . . . . 15 1 ∈ ℝ
1312ltnri 8081 . . . . . . . . . . . . . 14 ¬ 1 < 1
14 simplr 528 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑦 ⊆ {1})
15 simpr 110 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧𝑦)
1614, 15sseldd 3171 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 ∈ {1})
17 elsni 3625 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {1} → 𝑧 = 1)
1816, 17syl 14 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → 𝑧 = 1)
1918breq2d 4030 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → (1 < 𝑧 ↔ 1 < 1))
2013, 19mtbiri 676 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 1 < 𝑧)
21 eluz2gt1 9634 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 1 < 𝑧)
2220, 21nsyl 629 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑧𝑦) → ¬ 𝑧 ∈ (ℤ‘2))
2322ralrimiva 2563 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
24 disj 3486 . . . . . . . . . . 11 ((𝑦 ∩ (ℤ‘2)) = ∅ ↔ ∀𝑧𝑦 ¬ 𝑧 ∈ (ℤ‘2))
2523, 24sylibr 134 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∩ (ℤ‘2)) = ∅)
26 endjudisj 7240 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (ℤ‘2) ∈ V ∧ (𝑦 ∩ (ℤ‘2)) = ∅) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
271, 11, 25, 26mp3an12i 1352 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)))
28 simpr 110 . . . . . . . . . . . 12 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ {1})
29 1nn 8961 . . . . . . . . . . . . 13 1 ∈ ℕ
30 snssi 3751 . . . . . . . . . . . . 13 (1 ∈ ℕ → {1} ⊆ ℕ)
3129, 30ax-mp 5 . . . . . . . . . . . 12 {1} ⊆ ℕ
3228, 31sstrdi 3182 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → 𝑦 ⊆ ℕ)
33 2nn 9111 . . . . . . . . . . . 12 2 ∈ ℕ
34 uznnssnn 9609 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℤ‘2) ⊆ ℕ)
3533, 34mp1i 10 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (ℤ‘2) ⊆ ℕ)
3632, 35unssd 3326 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ⊆ ℕ)
37 nfv 1539 . . . . . . . . . . . . . . . 16 𝑚 𝑥 ⊆ ℕ
38 nfra1 2521 . . . . . . . . . . . . . . . 16 𝑚𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛
3937, 38nfan 1576 . . . . . . . . . . . . . . 15 𝑚(𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛)
40 nfv 1539 . . . . . . . . . . . . . . 15 𝑚 𝑥 ≈ ℕ
4139, 40nfim 1583 . . . . . . . . . . . . . 14 𝑚((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
4241nfal 1587 . . . . . . . . . . . . 13 𝑚𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ)
43 nfv 1539 . . . . . . . . . . . . 13 𝑚ω ∈ Omni
4442, 43nfan 1576 . . . . . . . . . . . 12 𝑚(∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni)
45 nfv 1539 . . . . . . . . . . . 12 𝑚 𝑦 ⊆ {1}
4644, 45nfan 1576 . . . . . . . . . . 11 𝑚((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1})
47 simpr 110 . . . . . . . . . . . . . . . . 17 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4847peano2nnd 8965 . . . . . . . . . . . . . . . 16 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
4948nnzd 9405 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
50 0p1e1 9064 . . . . . . . . . . . . . . . . 17 (0 + 1) = 1
51 0red 7989 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 ∈ ℝ)
52 nnre 8957 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
53 1red 8003 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℝ)
54 nngt0 8975 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 0 < 𝑚)
5551, 52, 53, 54ltadd1dd 8544 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (0 + 1) < (𝑚 + 1))
5650, 55eqbrtrrid 4054 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < (𝑚 + 1))
5756adantl 277 . . . . . . . . . . . . . . 15 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 1 < (𝑚 + 1))
58 eluz2b1 9633 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘2) ↔ ((𝑚 + 1) ∈ ℤ ∧ 1 < (𝑚 + 1)))
5949, 57, 58sylanbrc 417 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
60 elun2 3318 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (ℤ‘2) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6159, 60syl 14 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)))
6247nnred 8963 . . . . . . . . . . . . . 14 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
6362ltp1d 8918 . . . . . . . . . . . . 13 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 + 1))
64 breq2 4022 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑚 < 𝑛𝑚 < (𝑚 + 1)))
6564rspcev 2856 . . . . . . . . . . . . 13 (((𝑚 + 1) ∈ (𝑦 ∪ (ℤ‘2)) ∧ 𝑚 < (𝑚 + 1)) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6661, 63, 65syl2anc 411 . . . . . . . . . . . 12 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑚 ∈ ℕ) → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
6766ex 115 . . . . . . . . . . 11 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑚 ∈ ℕ → ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
6846, 67ralrimi 2561 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)
691, 11unex 4459 . . . . . . . . . . . 12 (𝑦 ∪ (ℤ‘2)) ∈ V
70 sseq1 3193 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ⊆ ℕ))
71 rexeq 2687 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∃𝑛𝑥 𝑚 < 𝑛 ↔ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7271ralbidv 2490 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛 ↔ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛))
7370, 72anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → ((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) ↔ ((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛)))
74 breq1 4021 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (𝑥 ≈ ℕ ↔ (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7573, 74imbi12d 234 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (ℤ‘2)) → (((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ↔ (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)))
7669, 75spcv 2846 . . . . . . . . . . 11 (∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7776ad2antrr 488 . . . . . . . . . 10 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (((𝑦 ∪ (ℤ‘2)) ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ (𝑦 ∪ (ℤ‘2))𝑚 < 𝑛) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ))
7836, 68, 77mp2and 433 . . . . . . . . 9 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ∪ (ℤ‘2)) ≈ ℕ)
79 entr 6811 . . . . . . . . 9 (((𝑦 ⊔ (ℤ‘2)) ≈ (𝑦 ∪ (ℤ‘2)) ∧ (𝑦 ∪ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
8027, 78, 79syl2anc 411 . . . . . . . 8 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ (ℤ‘2)) ≈ ℕ)
81 entr 6811 . . . . . . . 8 (((𝑦 ⊔ ℕ) ≈ (𝑦 ⊔ (ℤ‘2)) ∧ (𝑦 ⊔ (ℤ‘2)) ≈ ℕ) → (𝑦 ⊔ ℕ) ≈ ℕ)
828, 80, 81sylancr 414 . . . . . . 7 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 ⊔ ℕ) ≈ ℕ)
8382ensymd 6810 . . . . . 6 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ℕ ≈ (𝑦 ⊔ ℕ))
84 bren 6774 . . . . . 6 (ℕ ≈ (𝑦 ⊔ ℕ) ↔ ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
8583, 84sylib 122 . . . . 5 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → ∃𝑓 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ))
86 simpllr 534 . . . . . . . . 9 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ω ∈ Omni)
87 nnenom 10467 . . . . . . . . . 10 ℕ ≈ ω
88 enomni 7168 . . . . . . . . . 10 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
8987, 88ax-mp 5 . . . . . . . . 9 (ℕ ∈ Omni ↔ ω ∈ Omni)
9086, 89sylibr 134 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ℕ ∈ Omni)
91 f1ofo 5487 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9291adantl 277 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑓:ℕ–onto→(𝑦 ⊔ ℕ))
9390, 92fodjuomni 7178 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = ∅))
9493orcomd 730 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦))
95 simplr 528 . . . . . . . 8 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → 𝑦 ⊆ {1})
96 sssnm 3769 . . . . . . . 8 (∃𝑤 𝑤𝑦 → (𝑦 ⊆ {1} ↔ 𝑦 = {1}))
9795, 96syl5ibcom 155 . . . . . . 7 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (∃𝑤 𝑤𝑦𝑦 = {1}))
9897orim2d 789 . . . . . 6 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → ((𝑦 = ∅ ∨ ∃𝑤 𝑤𝑦) → (𝑦 = ∅ ∨ 𝑦 = {1})))
9994, 98mpd 13 . . . . 5 ((((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) ∧ 𝑓:ℕ–1-1-onto→(𝑦 ⊔ ℕ)) → (𝑦 = ∅ ∨ 𝑦 = {1}))
10085, 99exlimddv 1910 . . . 4 (((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {1}) → (𝑦 = ∅ ∨ 𝑦 = {1}))
101100ex 115 . . 3 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → (𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
102101alrimiv 1885 . 2 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
103 exmidsssnc 4221 . . 3 (1 ∈ ℕ → (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1}))))
10429, 103ax-mp 5 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {1} → (𝑦 = ∅ ∨ 𝑦 = {1})))
105102, 104sylibr 134 1 ((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wex 1503  wcel 2160  wral 2468  wrex 2469  Vcvv 2752  cun 3142  cin 3143  wss 3144  c0 3437  {csn 3607   class class class wbr 4018  EXMIDwem 4212  ωcom 4607  ontowfo 5233  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5897  cen 6765  cdju 7067  Omnicomni 7163  0cc0 7842  1c1 7843   + caddc 7845   < clt 8023  cn 8950  2c2 9001  cz 9284  cuz 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-exmid 4213  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-2o 6443  df-er 6560  df-map 6677  df-en 6768  df-dju 7068  df-inl 7077  df-inr 7078  df-omni 7164  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator