ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemloc GIF version

Theorem suplocexprlemloc 7733
Description: Lemma for suplocexpr 7737. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemloc (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑢,𝐴,𝑧,𝑤   𝑥,𝐴,𝑦,𝑢,𝑧   𝑢,𝑞,𝑧,𝑤   𝑥,𝑞,𝑦,𝜑   𝜑,𝑟,𝑤,𝑞   𝜑,𝑧,𝑥,𝑦   𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑟,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢,𝑟,𝑞)

Proof of Theorem suplocexprlemloc
Dummy variables 𝑠 𝑡 𝑣 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
2 ltbtwnnqq 7427 . . . . 5 (𝑞 <Q 𝑟 ↔ ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
31, 2sylib 122 . . . 4 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
4 simplll 533 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝜑)
5 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑞Q)
65ad2antrr 488 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞Q)
7 simprl 529 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣Q)
84, 6, 7jca32 310 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝜑 ∧ (𝑞Q𝑣Q)))
9 simprrl 539 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞 <Q 𝑣)
10 ltnqpri 7606 . . . . . . . . 9 (𝑞 <Q 𝑣 → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
1110adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
12 breq2 4019 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
13 breq2 4019 . . . . . . . . . . . 12 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (𝑧<P 𝑦𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1413ralbidv 2487 . . . . . . . . . . 11 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∀𝑧𝐴 𝑧<P 𝑦 ↔ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1514orbi2d 791 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
1612, 15imbi12d 234 . . . . . . . . 9 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))))
17 breq1 4018 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦))
18 breq1 4018 . . . . . . . . . . . . . 14 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑧 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
1918rexbidv 2488 . . . . . . . . . . . . 13 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∃𝑧𝐴 𝑥<P 𝑧 ↔ ∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
2019orbi1d 792 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2117, 20imbi12d 234 . . . . . . . . . . 11 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
2221ralbidv 2487 . . . . . . . . . 10 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∀𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
23 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2423ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
25 simplrl 535 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑞Q)
26 nqprlu 7559 . . . . . . . . . . 11 (𝑞Q → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2725, 26syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2822, 24, 27rspcdva 2858 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
29 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑣Q)
30 nqprlu 7559 . . . . . . . . . 10 (𝑣Q → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3216, 28, 31rspcdva 2858 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
3311, 32mpd 13 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
34 simpr 110 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧)
3527ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
36 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
37 suplocexpr.ub . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3836, 37, 23suplocexprlemss 7727 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
3938ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝐴P)
40 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧𝐴)
4139, 40sseldd 3168 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧P)
42 ltdfpr 7518 . . . . . . . . . . . . 13 ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P𝑧P) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4335, 41, 42syl2anc 411 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4434, 43mpbid 147 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)))
45 vex 2752 . . . . . . . . . . . . . 14 𝑤 ∈ V
46 breq2 4019 . . . . . . . . . . . . . 14 (𝑢 = 𝑤 → (𝑞 <Q 𝑢𝑞 <Q 𝑤))
47 ltnqex 7561 . . . . . . . . . . . . . . 15 {𝑙𝑙 <Q 𝑞} ∈ V
48 gtnqex 7562 . . . . . . . . . . . . . . 15 {𝑢𝑞 <Q 𝑢} ∈ V
4947, 48op2nd 6161 . . . . . . . . . . . . . 14 (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) = {𝑢𝑞 <Q 𝑢}
5045, 46, 49elab2 2897 . . . . . . . . . . . . 13 (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ↔ 𝑞 <Q 𝑤)
5150anbi1i 458 . . . . . . . . . . . 12 ((𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5251rexbii 2494 . . . . . . . . . . 11 (∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5344, 52sylib 122 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
54 simpllr 534 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧𝐴)
55 simprrl 539 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 <Q 𝑤)
5641adantr 276 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧P)
57 prop 7487 . . . . . . . . . . . . . . . . 17 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
5856, 57syl 14 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
59 simprrr 540 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑤 ∈ (1st𝑧))
60 prcdnql 7496 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑤 ∈ (1st𝑧)) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6158, 59, 60syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6255, 61mpd 13 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 ∈ (1st𝑧))
6354, 62jca 306 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑧𝐴𝑞 ∈ (1st𝑧)))
646319.8ad 1601 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
65 df-rex 2471 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑞 ∈ (1st𝑧) ↔ ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
6664, 65sylibr 134 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
67 suplocexprlemell 7725 . . . . . . . . . . 11 (𝑞 (1st𝐴) ↔ ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
6866, 67sylibr 134 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 (1st𝐴))
6953, 68rexlimddv 2609 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑞 (1st𝐴))
7069rexlimdva2 2607 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧𝑞 (1st𝐴)))
71 fo2nd 6172 . . . . . . . . . . . . . . 15 2nd :V–onto→V
72 fofun 5451 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → Fun 2nd )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 Fun 2nd
74 fvelima 5580 . . . . . . . . . . . . . 14 ((Fun 2nd𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7573, 74mpan 424 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐴) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7675adantl 277 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
77 breq1 4018 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → (𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
78 simpllr 534 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
79 simprl 529 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡𝐴)
8077, 78, 79rspcdva 2858 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
8129ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣Q)
8238ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝐴P)
8382, 79sseldd 3168 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡P)
84 nqpru 7564 . . . . . . . . . . . . . . 15 ((𝑣Q𝑡P) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8581, 83, 84syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8680, 85mpbird 167 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣 ∈ (2nd𝑡))
87 simprr 531 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (2nd𝑡) = 𝑠)
8886, 87eleqtrd 2266 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣𝑠)
8976, 88rexlimddv 2609 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → 𝑣𝑠)
9089ralrimiva 2560 . . . . . . . . . 10 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
91 vex 2752 . . . . . . . . . . 11 𝑣 ∈ V
9291elint2 3863 . . . . . . . . . 10 (𝑣 (2nd𝐴) ↔ ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
9390, 92sylibr 134 . . . . . . . . 9 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → 𝑣 (2nd𝐴))
9493ex 115 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → 𝑣 (2nd𝐴)))
9570, 94orim12d 787 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴))))
9633, 95mpd 13 . . . . . 6 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
978, 9, 96syl2anc 411 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
98 breq2 4019 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑤 <Q 𝑢𝑤 <Q 𝑟))
9998rexbidv 2488 . . . . . . . . 9 (𝑢 = 𝑟 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
100 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑟Q)
101100ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟Q)
102 simpr 110 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 (2nd𝐴))
103 simprrr 540 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣 <Q 𝑟)
104103adantr 276 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 <Q 𝑟)
105 breq1 4018 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 <Q 𝑟𝑣 <Q 𝑟))
106105rspcev 2853 . . . . . . . . . 10 ((𝑣 (2nd𝐴) ∧ 𝑣 <Q 𝑟) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
107102, 104, 106syl2anc 411 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
10899, 101, 107elrabd 2907 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
109 suplocexpr.b . . . . . . . . . . . 12 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
110109suplocexprlem2b 7726 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
11138, 110syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
112111eleq2d 2257 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
113112ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
114108, 113mpbird 167 . . . . . . 7 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ (2nd𝐵))
115114ex 115 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑣 (2nd𝐴) → 𝑟 ∈ (2nd𝐵)))
116115orim2d 789 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → ((𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
11797, 116mpd 13 . . . 4 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
1183, 117rexlimddv 2609 . . 3 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
119118ex 115 . 2 ((𝜑 ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
120119ralrimivva 2569 1 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1363  wex 1502  wcel 2158  {cab 2173  wral 2465  wrex 2466  {crab 2469  Vcvv 2749  wss 3141  cop 3607   cuni 3821   cint 3856   class class class wbr 4015  cima 4641  Fun wfun 5222  ontowfo 5226  cfv 5228  1st c1st 6152  2nd c2nd 6153  Qcnq 7292   <Q cltq 7297  Pcnp 7303  <P cltp 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-inp 7478  df-iltp 7482
This theorem is referenced by:  suplocexprlemex  7734
  Copyright terms: Public domain W3C validator