Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) → 𝑞 <Q 𝑟) |
2 | | ltbtwnnqq 7377 |
. . . . 5
⊢ (𝑞 <Q
𝑟 ↔ ∃𝑣 ∈ Q (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟)) |
3 | 1, 2 | sylib 121 |
. . . 4
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) → ∃𝑣 ∈ Q (𝑞 <Q 𝑣 ∧ 𝑣 <Q 𝑟)) |
4 | | simplll 528 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → 𝜑) |
5 | | simprl 526 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) →
𝑞 ∈
Q) |
6 | 5 | ad2antrr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → 𝑞 ∈ Q) |
7 | | simprl 526 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → 𝑣 ∈ Q) |
8 | 4, 6, 7 | jca32 308 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → (𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈
Q))) |
9 | | simprrl 534 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → 𝑞 <Q 𝑣) |
10 | | ltnqpri 7556 |
. . . . . . . . 9
⊢ (𝑞 <Q
𝑣 → 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) |
11 | 10 | adantl 275 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) |
12 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑦 = 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
13 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑦 = 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → (𝑧<P
𝑦 ↔ 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
14 | 13 | ralbidv 2470 |
. . . . . . . . . . 11
⊢ (𝑦 = 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → (∀𝑧 ∈ 𝐴 𝑧<P 𝑦 ↔ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
15 | 14 | orbi2d 785 |
. . . . . . . . . 10
⊢ (𝑦 = 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → ((∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦) ↔ (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉))) |
16 | 12, 15 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑦 = 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → ((〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦)) ↔ (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)))) |
17 | | breq1 3992 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → (𝑥<P
𝑦 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦)) |
18 | | breq1 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → (𝑥<P
𝑧 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧)) |
19 | 18 | rexbidv 2471 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ↔ ∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧)) |
20 | 19 | orbi1d 786 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → ((∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦) ↔ (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
21 | 17, 20 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → ((𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦)) ↔ (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦)))) |
22 | 21 | ralbidv 2470 |
. . . . . . . . . 10
⊢ (𝑥 = 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 → (∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦)) ↔ ∀𝑦 ∈ P
(〈{𝑙 ∣ 𝑙 <Q
𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦)))) |
23 | | suplocexpr.loc |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
24 | 23 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → ∀𝑥 ∈ P ∀𝑦 ∈ P (𝑥<P
𝑦 → (∃𝑧 ∈ 𝐴 𝑥<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
25 | | simplrl 530 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → 𝑞 ∈ Q) |
26 | | nqprlu 7509 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 ∈
P) |
27 | 25, 26 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 ∈
P) |
28 | 22, 24, 27 | rspcdva 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → ∀𝑦 ∈ P (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑦 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 𝑦))) |
29 | | simplrr 531 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → 𝑣 ∈ Q) |
30 | | nqprlu 7509 |
. . . . . . . . . 10
⊢ (𝑣 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 ∈
P) |
31 | 29, 30 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 ∈
P) |
32 | 16, 28, 31 | rspcdva 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉))) |
33 | 11, 32 | mpd 13 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
34 | | simpr 109 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) |
35 | 27 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 ∈
P) |
36 | | suplocexpr.m |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
37 | | suplocexpr.ub |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑥 ∈ P ∀𝑦 ∈ 𝐴 𝑦<P 𝑥) |
38 | 36, 37, 23 | suplocexprlemss 7677 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ P) |
39 | 38 | ad4antr 491 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 𝐴 ⊆ P) |
40 | | simplr 525 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 𝑧 ∈ 𝐴) |
41 | 39, 40 | sseldd 3148 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 𝑧 ∈ P) |
42 | | ltdfpr 7468 |
. . . . . . . . . . . . 13
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉 ∈ P
∧ 𝑧 ∈
P) → (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ↔ ∃𝑤 ∈ Q (𝑤 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ∧ 𝑤 ∈ (1st
‘𝑧)))) |
43 | 35, 41, 42 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → (〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ↔ ∃𝑤 ∈ Q (𝑤 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ∧ 𝑤 ∈ (1st
‘𝑧)))) |
44 | 34, 43 | mpbid 146 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → ∃𝑤 ∈ Q (𝑤 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ∧ 𝑤 ∈ (1st
‘𝑧))) |
45 | | vex 2733 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
46 | | breq2 3993 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑤 → (𝑞 <Q 𝑢 ↔ 𝑞 <Q 𝑤)) |
47 | | ltnqex 7511 |
. . . . . . . . . . . . . . 15
⊢ {𝑙 ∣ 𝑙 <Q 𝑞} ∈ V |
48 | | gtnqex 7512 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ 𝑞 <Q 𝑢} ∈ V |
49 | 47, 48 | op2nd 6126 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) = {𝑢 ∣ 𝑞 <Q 𝑢} |
50 | 45, 46, 49 | elab2 2878 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ↔ 𝑞 <Q
𝑤) |
51 | 50 | anbi1i 455 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ∧ 𝑤 ∈ (1st
‘𝑧)) ↔ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧))) |
52 | 51 | rexbii 2477 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈
Q (𝑤 ∈
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉) ∧ 𝑤 ∈ (1st
‘𝑧)) ↔
∃𝑤 ∈
Q (𝑞
<Q 𝑤 ∧ 𝑤 ∈ (1st ‘𝑧))) |
53 | 44, 52 | sylib 121 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → ∃𝑤 ∈ Q (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧))) |
54 | | simpllr 529 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑧 ∈ 𝐴) |
55 | | simprrl 534 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑞 <Q 𝑤) |
56 | 41 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑧 ∈ P) |
57 | | prop 7437 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ P →
〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈
P) |
58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) →
〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈
P) |
59 | | simprrr 535 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑤 ∈ (1st ‘𝑧)) |
60 | | prcdnql 7446 |
. . . . . . . . . . . . . . . 16
⊢
((〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∈ P ∧ 𝑤 ∈ (1st
‘𝑧)) → (𝑞 <Q
𝑤 → 𝑞 ∈ (1st ‘𝑧))) |
61 | 58, 59, 60 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → (𝑞 <Q 𝑤 → 𝑞 ∈ (1st ‘𝑧))) |
62 | 55, 61 | mpd 13 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑞 ∈ (1st ‘𝑧)) |
63 | 54, 62 | jca 304 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → (𝑧 ∈ 𝐴 ∧ 𝑞 ∈ (1st ‘𝑧))) |
64 | 63 | 19.8ad 1584 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑞 ∈ (1st ‘𝑧))) |
65 | | df-rex 2454 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝐴 𝑞 ∈ (1st ‘𝑧) ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑞 ∈ (1st ‘𝑧))) |
66 | 64, 65 | sylibr 133 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → ∃𝑧 ∈ 𝐴 𝑞 ∈ (1st ‘𝑧)) |
67 | | suplocexprlemell 7675 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑞 ∈ (1st ‘𝑧)) |
68 | 66, 67 | sylibr 133 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) ∧ (𝑤 ∈ Q ∧ (𝑞 <Q
𝑤 ∧ 𝑤 ∈ (1st ‘𝑧)))) → 𝑞 ∈ ∪
(1st “ 𝐴)) |
69 | 53, 68 | rexlimddv 2592 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ 𝑧 ∈ 𝐴) ∧ 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧) → 𝑞 ∈ ∪
(1st “ 𝐴)) |
70 | 69 | rexlimdva2 2590 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → (∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 → 𝑞 ∈ ∪
(1st “ 𝐴))) |
71 | | fo2nd 6137 |
. . . . . . . . . . . . . . 15
⊢
2nd :V–onto→V |
72 | | fofun 5421 |
. . . . . . . . . . . . . . 15
⊢
(2nd :V–onto→V → Fun 2nd ) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ Fun
2nd |
74 | | fvelima 5548 |
. . . . . . . . . . . . . 14
⊢ ((Fun
2nd ∧ 𝑠
∈ (2nd “ 𝐴)) → ∃𝑡 ∈ 𝐴 (2nd ‘𝑡) = 𝑠) |
75 | 73, 74 | mpan 422 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (2nd “
𝐴) → ∃𝑡 ∈ 𝐴 (2nd ‘𝑡) = 𝑠) |
76 | 75 | adantl 275 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) → ∃𝑡 ∈ 𝐴 (2nd ‘𝑡) = 𝑠) |
77 | | breq1 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑡 → (𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 ↔ 𝑡<P
〈{𝑙 ∣ 𝑙 <Q
𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
78 | | simpllr 529 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) |
79 | | simprl 526 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑡 ∈ 𝐴) |
80 | 77, 78, 79 | rspcdva 2839 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑡<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) |
81 | 29 | ad3antrrr 489 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑣 ∈ Q) |
82 | 38 | ad5antr 493 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝐴 ⊆ P) |
83 | 82, 79 | sseldd 3148 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑡 ∈ P) |
84 | | nqpru 7514 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Q ∧
𝑡 ∈ P)
→ (𝑣 ∈
(2nd ‘𝑡)
↔ 𝑡<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
85 | 81, 83, 84 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → (𝑣 ∈ (2nd ‘𝑡) ↔ 𝑡<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉)) |
86 | 80, 85 | mpbird 166 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑣 ∈ (2nd ‘𝑡)) |
87 | | simprr 527 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → (2nd ‘𝑡) = 𝑠) |
88 | 86, 87 | eleqtrd 2249 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) ∧ (𝑡 ∈ 𝐴 ∧ (2nd ‘𝑡) = 𝑠)) → 𝑣 ∈ 𝑠) |
89 | 76, 88 | rexlimddv 2592 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑣 ∈ Q))
∧ 𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) ∧ 𝑠 ∈ (2nd “
𝐴)) → 𝑣 ∈ 𝑠) |
90 | 89 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) → ∀𝑠 ∈ (2nd “
𝐴)𝑣 ∈ 𝑠) |
91 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
92 | 91 | elint2 3838 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ∩ (2nd “ 𝐴) ↔ ∀𝑠 ∈ (2nd “ 𝐴)𝑣 ∈ 𝑠) |
93 | 90, 92 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) ∧ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) → 𝑣 ∈ ∩ (2nd “ 𝐴)) |
94 | 93 | ex 114 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → (∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉 → 𝑣 ∈ ∩ (2nd “ 𝐴))) |
95 | 70, 94 | orim12d 781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → ((∃𝑧 ∈ 𝐴 〈{𝑙 ∣ 𝑙 <Q 𝑞}, {𝑢 ∣ 𝑞 <Q 𝑢}〉<P 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧<P 〈{𝑙 ∣ 𝑙 <Q 𝑣}, {𝑢 ∣ 𝑣 <Q 𝑢}〉) → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑣 ∈ ∩
(2nd “ 𝐴)))) |
96 | 33, 95 | mpd 13 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑣 ∈ Q)) ∧
𝑞
<Q 𝑣) → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑣 ∈ ∩ (2nd “ 𝐴))) |
97 | 8, 9, 96 | syl2anc 409 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑣 ∈ ∩ (2nd “ 𝐴))) |
98 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑟 → (𝑤 <Q 𝑢 ↔ 𝑤 <Q 𝑟)) |
99 | 98 | rexbidv 2471 |
. . . . . . . . 9
⊢ (𝑢 = 𝑟 → (∃𝑤 ∈ ∩
(2nd “ 𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟)) |
100 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) →
𝑟 ∈
Q) |
101 | 100 | ad3antrrr 489 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ 𝑟 ∈
Q) |
102 | | simpr 109 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ 𝑣 ∈ ∩ (2nd “ 𝐴)) |
103 | | simprrr 535 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → 𝑣 <Q 𝑟) |
104 | 103 | adantr 274 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ 𝑣
<Q 𝑟) |
105 | | breq1 3992 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → (𝑤 <Q 𝑟 ↔ 𝑣 <Q 𝑟)) |
106 | 105 | rspcev 2834 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ ∩ (2nd “ 𝐴) ∧ 𝑣 <Q 𝑟) → ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑟) |
107 | 102, 104,
106 | syl2anc 409 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ ∃𝑤 ∈
∩ (2nd “ 𝐴)𝑤 <Q 𝑟) |
108 | 99, 101, 107 | elrabd 2888 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ 𝑟 ∈ {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
109 | | suplocexpr.b |
. . . . . . . . . . . 12
⊢ 𝐵 = 〈∪ (1st “ 𝐴), {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}〉 |
110 | 109 | suplocexprlem2b 7676 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ P →
(2nd ‘𝐵) =
{𝑢 ∈ Q
∣ ∃𝑤 ∈
∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
111 | 38, 110 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝐵) = {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢}) |
112 | 111 | eleq2d 2240 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 ∈ (2nd ‘𝐵) ↔ 𝑟 ∈ {𝑢 ∈ Q ∣ ∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) |
113 | 112 | ad4antr 491 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ (𝑟 ∈
(2nd ‘𝐵)
↔ 𝑟 ∈ {𝑢 ∈ Q ∣
∃𝑤 ∈ ∩ (2nd “ 𝐴)𝑤 <Q 𝑢})) |
114 | 108, 113 | mpbird 166 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑞 ∈ Q ∧
𝑟 ∈ Q))
∧ 𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) ∧ 𝑣 ∈ ∩
(2nd “ 𝐴))
→ 𝑟 ∈
(2nd ‘𝐵)) |
115 | 114 | ex 114 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → (𝑣 ∈ ∩
(2nd “ 𝐴)
→ 𝑟 ∈
(2nd ‘𝐵))) |
116 | 115 | orim2d 783 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → ((𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑣 ∈ ∩ (2nd “ 𝐴)) → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑟 ∈
(2nd ‘𝐵)))) |
117 | 97, 116 | mpd 13 |
. . . 4
⊢ ((((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) ∧ (𝑣 ∈ Q ∧ (𝑞 <Q
𝑣 ∧ 𝑣 <Q 𝑟))) → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑟 ∈
(2nd ‘𝐵))) |
118 | 3, 117 | rexlimddv 2592 |
. . 3
⊢ (((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) ∧
𝑞
<Q 𝑟) → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑟 ∈
(2nd ‘𝐵))) |
119 | 118 | ex 114 |
. 2
⊢ ((𝜑 ∧ (𝑞 ∈ Q ∧ 𝑟 ∈ Q)) →
(𝑞
<Q 𝑟 → (𝑞 ∈ ∪
(1st “ 𝐴)
∨ 𝑟 ∈
(2nd ‘𝐵)))) |
120 | 119 | ralrimivva 2552 |
1
⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ ∪ (1st “ 𝐴) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |