ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemloc GIF version

Theorem suplocexprlemloc 7529
Description: Lemma for suplocexpr 7533. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemloc (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑢,𝐴,𝑧,𝑤   𝑥,𝐴,𝑦,𝑢,𝑧   𝑢,𝑞,𝑧,𝑤   𝑥,𝑞,𝑦,𝜑   𝜑,𝑟,𝑤,𝑞   𝜑,𝑧,𝑥,𝑦   𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑟,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢,𝑟,𝑞)

Proof of Theorem suplocexprlemloc
Dummy variables 𝑠 𝑡 𝑣 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
2 ltbtwnnqq 7223 . . . . 5 (𝑞 <Q 𝑟 ↔ ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
31, 2sylib 121 . . . 4 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
4 simplll 522 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝜑)
5 simprl 520 . . . . . . . 8 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑞Q)
65ad2antrr 479 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞Q)
7 simprl 520 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣Q)
84, 6, 7jca32 308 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝜑 ∧ (𝑞Q𝑣Q)))
9 simprrl 528 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞 <Q 𝑣)
10 ltnqpri 7402 . . . . . . . . 9 (𝑞 <Q 𝑣 → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
1110adantl 275 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
12 breq2 3933 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
13 breq2 3933 . . . . . . . . . . . 12 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (𝑧<P 𝑦𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1413ralbidv 2437 . . . . . . . . . . 11 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∀𝑧𝐴 𝑧<P 𝑦 ↔ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1514orbi2d 779 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
1612, 15imbi12d 233 . . . . . . . . 9 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))))
17 breq1 3932 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦))
18 breq1 3932 . . . . . . . . . . . . . 14 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑧 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
1918rexbidv 2438 . . . . . . . . . . . . 13 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∃𝑧𝐴 𝑥<P 𝑧 ↔ ∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
2019orbi1d 780 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2117, 20imbi12d 233 . . . . . . . . . . 11 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
2221ralbidv 2437 . . . . . . . . . 10 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∀𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
23 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2423ad2antrr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
25 simplrl 524 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑞Q)
26 nqprlu 7355 . . . . . . . . . . 11 (𝑞Q → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2725, 26syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2822, 24, 27rspcdva 2794 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
29 simplrr 525 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑣Q)
30 nqprlu 7355 . . . . . . . . . 10 (𝑣Q → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3216, 28, 31rspcdva 2794 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
3311, 32mpd 13 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
34 simpr 109 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧)
3527ad2antrr 479 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
36 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
37 suplocexpr.ub . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3836, 37, 23suplocexprlemss 7523 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
3938ad4antr 485 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝐴P)
40 simplr 519 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧𝐴)
4139, 40sseldd 3098 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧P)
42 ltdfpr 7314 . . . . . . . . . . . . 13 ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P𝑧P) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4335, 41, 42syl2anc 408 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4434, 43mpbid 146 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)))
45 vex 2689 . . . . . . . . . . . . . 14 𝑤 ∈ V
46 breq2 3933 . . . . . . . . . . . . . 14 (𝑢 = 𝑤 → (𝑞 <Q 𝑢𝑞 <Q 𝑤))
47 ltnqex 7357 . . . . . . . . . . . . . . 15 {𝑙𝑙 <Q 𝑞} ∈ V
48 gtnqex 7358 . . . . . . . . . . . . . . 15 {𝑢𝑞 <Q 𝑢} ∈ V
4947, 48op2nd 6045 . . . . . . . . . . . . . 14 (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) = {𝑢𝑞 <Q 𝑢}
5045, 46, 49elab2 2832 . . . . . . . . . . . . 13 (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ↔ 𝑞 <Q 𝑤)
5150anbi1i 453 . . . . . . . . . . . 12 ((𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5251rexbii 2442 . . . . . . . . . . 11 (∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5344, 52sylib 121 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
54 simpllr 523 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧𝐴)
55 simprrl 528 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 <Q 𝑤)
5641adantr 274 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧P)
57 prop 7283 . . . . . . . . . . . . . . . . 17 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
5856, 57syl 14 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
59 simprrr 529 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑤 ∈ (1st𝑧))
60 prcdnql 7292 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑤 ∈ (1st𝑧)) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6158, 59, 60syl2anc 408 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6255, 61mpd 13 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 ∈ (1st𝑧))
6354, 62jca 304 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑧𝐴𝑞 ∈ (1st𝑧)))
646319.8ad 1570 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
65 df-rex 2422 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑞 ∈ (1st𝑧) ↔ ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
6664, 65sylibr 133 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
67 suplocexprlemell 7521 . . . . . . . . . . 11 (𝑞 (1st𝐴) ↔ ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
6866, 67sylibr 133 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 (1st𝐴))
6953, 68rexlimddv 2554 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑞 (1st𝐴))
7069rexlimdva2 2552 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧𝑞 (1st𝐴)))
71 fo2nd 6056 . . . . . . . . . . . . . . 15 2nd :V–onto→V
72 fofun 5346 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → Fun 2nd )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 Fun 2nd
74 fvelima 5473 . . . . . . . . . . . . . 14 ((Fun 2nd𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7573, 74mpan 420 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐴) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7675adantl 275 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
77 breq1 3932 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → (𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
78 simpllr 523 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
79 simprl 520 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡𝐴)
8077, 78, 79rspcdva 2794 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
8129ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣Q)
8238ad5antr 487 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝐴P)
8382, 79sseldd 3098 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡P)
84 nqpru 7360 . . . . . . . . . . . . . . 15 ((𝑣Q𝑡P) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8581, 83, 84syl2anc 408 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8680, 85mpbird 166 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣 ∈ (2nd𝑡))
87 simprr 521 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (2nd𝑡) = 𝑠)
8886, 87eleqtrd 2218 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣𝑠)
8976, 88rexlimddv 2554 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → 𝑣𝑠)
9089ralrimiva 2505 . . . . . . . . . 10 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
91 vex 2689 . . . . . . . . . . 11 𝑣 ∈ V
9291elint2 3778 . . . . . . . . . 10 (𝑣 (2nd𝐴) ↔ ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
9390, 92sylibr 133 . . . . . . . . 9 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → 𝑣 (2nd𝐴))
9493ex 114 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → 𝑣 (2nd𝐴)))
9570, 94orim12d 775 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴))))
9633, 95mpd 13 . . . . . 6 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
978, 9, 96syl2anc 408 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
98 breq2 3933 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑤 <Q 𝑢𝑤 <Q 𝑟))
9998rexbidv 2438 . . . . . . . . 9 (𝑢 = 𝑟 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
100 simprr 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑟Q)
101100ad3antrrr 483 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟Q)
102 simpr 109 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 (2nd𝐴))
103 simprrr 529 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣 <Q 𝑟)
104103adantr 274 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 <Q 𝑟)
105 breq1 3932 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 <Q 𝑟𝑣 <Q 𝑟))
106105rspcev 2789 . . . . . . . . . 10 ((𝑣 (2nd𝐴) ∧ 𝑣 <Q 𝑟) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
107102, 104, 106syl2anc 408 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
10899, 101, 107elrabd 2842 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
109 suplocexpr.b . . . . . . . . . . . 12 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
110109suplocexprlem2b 7522 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
11138, 110syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
112111eleq2d 2209 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
113112ad4antr 485 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
114108, 113mpbird 166 . . . . . . 7 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ (2nd𝐵))
115114ex 114 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑣 (2nd𝐴) → 𝑟 ∈ (2nd𝐵)))
116115orim2d 777 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → ((𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
11797, 116mpd 13 . . . 4 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
1183, 117rexlimddv 2554 . . 3 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
119118ex 114 . 2 ((𝜑 ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
120119ralrimivva 2514 1 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wex 1468  wcel 1480  {cab 2125  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  wss 3071  cop 3530   cuni 3736   cint 3771   class class class wbr 3929  cima 4542  Fun wfun 5117  ontowfo 5121  cfv 5123  1st c1st 6036  2nd c2nd 6037  Qcnq 7088   <Q cltq 7093  Pcnp 7099  <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  suplocexprlemex  7530
  Copyright terms: Public domain W3C validator