ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemloc GIF version

Theorem suplocexprlemloc 7695
Description: Lemma for suplocexpr 7699. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemloc (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑢,𝐴,𝑧,𝑤   𝑥,𝐴,𝑦,𝑢,𝑧   𝑢,𝑞,𝑧,𝑤   𝑥,𝑞,𝑦,𝜑   𝜑,𝑟,𝑤,𝑞   𝜑,𝑧,𝑥,𝑦   𝑢,𝑟
Allowed substitution hints:   𝜑(𝑢)   𝐴(𝑟,𝑞)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢,𝑟,𝑞)

Proof of Theorem suplocexprlemloc
Dummy variables 𝑠 𝑡 𝑣 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → 𝑞 <Q 𝑟)
2 ltbtwnnqq 7389 . . . . 5 (𝑞 <Q 𝑟 ↔ ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
31, 2sylib 122 . . . 4 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → ∃𝑣Q (𝑞 <Q 𝑣𝑣 <Q 𝑟))
4 simplll 533 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝜑)
5 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑞Q)
65ad2antrr 488 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞Q)
7 simprl 529 . . . . . . 7 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣Q)
84, 6, 7jca32 310 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝜑 ∧ (𝑞Q𝑣Q)))
9 simprrl 539 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑞 <Q 𝑣)
10 ltnqpri 7568 . . . . . . . . 9 (𝑞 <Q 𝑣 → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
1110adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
12 breq2 4002 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
13 breq2 4002 . . . . . . . . . . . 12 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (𝑧<P 𝑦𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1413ralbidv 2475 . . . . . . . . . . 11 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∀𝑧𝐴 𝑧<P 𝑦 ↔ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
1514orbi2d 790 . . . . . . . . . 10 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
1612, 15imbi12d 234 . . . . . . . . 9 (𝑦 = ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))))
17 breq1 4001 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑦 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦))
18 breq1 4001 . . . . . . . . . . . . . 14 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (𝑥<P 𝑧 ↔ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
1918rexbidv 2476 . . . . . . . . . . . . 13 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∃𝑧𝐴 𝑥<P 𝑧 ↔ ∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧))
2019orbi1d 791 . . . . . . . . . . . 12 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦) ↔ (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2117, 20imbi12d 234 . . . . . . . . . . 11 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → ((𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
2221ralbidv 2475 . . . . . . . . . 10 (𝑥 = ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ → (∀𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)) ↔ ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦))))
23 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
2423ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
25 simplrl 535 . . . . . . . . . . 11 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑞Q)
26 nqprlu 7521 . . . . . . . . . . 11 (𝑞Q → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2725, 26syl 14 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
2822, 24, 27rspcdva 2844 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ∀𝑦P (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑦 → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
29 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → 𝑣Q)
30 nqprlu 7521 . . . . . . . . . 10 (𝑣Q → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . . . . . 9 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ∈ P)
3216, 28, 31rspcdva 2844 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)))
3311, 32mpd 13 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
34 simpr 110 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧)
3527ad2antrr 488 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P)
36 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
37 suplocexpr.ub . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
3836, 37, 23suplocexprlemss 7689 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
3938ad4antr 494 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝐴P)
40 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧𝐴)
4139, 40sseldd 3154 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑧P)
42 ltdfpr 7480 . . . . . . . . . . . . 13 ((⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩ ∈ P𝑧P) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4335, 41, 42syl2anc 411 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → (⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ↔ ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧))))
4434, 43mpbid 147 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)))
45 vex 2738 . . . . . . . . . . . . . 14 𝑤 ∈ V
46 breq2 4002 . . . . . . . . . . . . . 14 (𝑢 = 𝑤 → (𝑞 <Q 𝑢𝑞 <Q 𝑤))
47 ltnqex 7523 . . . . . . . . . . . . . . 15 {𝑙𝑙 <Q 𝑞} ∈ V
48 gtnqex 7524 . . . . . . . . . . . . . . 15 {𝑢𝑞 <Q 𝑢} ∈ V
4947, 48op2nd 6138 . . . . . . . . . . . . . 14 (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) = {𝑢𝑞 <Q 𝑢}
5045, 46, 49elab2 2883 . . . . . . . . . . . . 13 (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ↔ 𝑞 <Q 𝑤)
5150anbi1i 458 . . . . . . . . . . . 12 ((𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5251rexbii 2482 . . . . . . . . . . 11 (∃𝑤Q (𝑤 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩) ∧ 𝑤 ∈ (1st𝑧)) ↔ ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
5344, 52sylib 122 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → ∃𝑤Q (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))
54 simpllr 534 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧𝐴)
55 simprrl 539 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 <Q 𝑤)
5641adantr 276 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑧P)
57 prop 7449 . . . . . . . . . . . . . . . . 17 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
5856, 57syl 14 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
59 simprrr 540 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑤 ∈ (1st𝑧))
60 prcdnql 7458 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑤 ∈ (1st𝑧)) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6158, 59, 60syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑞 <Q 𝑤𝑞 ∈ (1st𝑧)))
6255, 61mpd 13 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 ∈ (1st𝑧))
6354, 62jca 306 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → (𝑧𝐴𝑞 ∈ (1st𝑧)))
646319.8ad 1589 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
65 df-rex 2459 . . . . . . . . . . . 12 (∃𝑧𝐴 𝑞 ∈ (1st𝑧) ↔ ∃𝑧(𝑧𝐴𝑞 ∈ (1st𝑧)))
6664, 65sylibr 134 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
67 suplocexprlemell 7687 . . . . . . . . . . 11 (𝑞 (1st𝐴) ↔ ∃𝑧𝐴 𝑞 ∈ (1st𝑧))
6866, 67sylibr 134 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) ∧ (𝑤Q ∧ (𝑞 <Q 𝑤𝑤 ∈ (1st𝑧)))) → 𝑞 (1st𝐴))
6953, 68rexlimddv 2597 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ 𝑧𝐴) ∧ ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧) → 𝑞 (1st𝐴))
7069rexlimdva2 2595 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧𝑞 (1st𝐴)))
71 fo2nd 6149 . . . . . . . . . . . . . . 15 2nd :V–onto→V
72 fofun 5431 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → Fun 2nd )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 Fun 2nd
74 fvelima 5559 . . . . . . . . . . . . . 14 ((Fun 2nd𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7573, 74mpan 424 . . . . . . . . . . . . 13 (𝑠 ∈ (2nd𝐴) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
7675adantl 277 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → ∃𝑡𝐴 (2nd𝑡) = 𝑠)
77 breq1 4001 . . . . . . . . . . . . . . 15 (𝑧 = 𝑡 → (𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
78 simpllr 534 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
79 simprl 529 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡𝐴)
8077, 78, 79rspcdva 2844 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩)
8129ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣Q)
8238ad5antr 496 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝐴P)
8382, 79sseldd 3154 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑡P)
84 nqpru 7526 . . . . . . . . . . . . . . 15 ((𝑣Q𝑡P) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8581, 83, 84syl2anc 411 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (𝑣 ∈ (2nd𝑡) ↔ 𝑡<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩))
8680, 85mpbird 167 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣 ∈ (2nd𝑡))
87 simprr 531 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → (2nd𝑡) = 𝑠)
8886, 87eleqtrd 2254 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) ∧ (𝑡𝐴 ∧ (2nd𝑡) = 𝑠)) → 𝑣𝑠)
8976, 88rexlimddv 2597 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) ∧ 𝑠 ∈ (2nd𝐴)) → 𝑣𝑠)
9089ralrimiva 2548 . . . . . . . . . 10 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
91 vex 2738 . . . . . . . . . . 11 𝑣 ∈ V
9291elint2 3847 . . . . . . . . . 10 (𝑣 (2nd𝐴) ↔ ∀𝑠 ∈ (2nd𝐴)𝑣𝑠)
9390, 92sylibr 134 . . . . . . . . 9 ((((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) ∧ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → 𝑣 (2nd𝐴))
9493ex 115 . . . . . . . 8 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩ → 𝑣 (2nd𝐴)))
9570, 94orim12d 786 . . . . . . 7 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → ((∃𝑧𝐴 ⟨{𝑙𝑙 <Q 𝑞}, {𝑢𝑞 <Q 𝑢}⟩<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P ⟨{𝑙𝑙 <Q 𝑣}, {𝑢𝑣 <Q 𝑢}⟩) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴))))
9633, 95mpd 13 . . . . . 6 (((𝜑 ∧ (𝑞Q𝑣Q)) ∧ 𝑞 <Q 𝑣) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
978, 9, 96syl2anc 411 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)))
98 breq2 4002 . . . . . . . . . 10 (𝑢 = 𝑟 → (𝑤 <Q 𝑢𝑤 <Q 𝑟))
9998rexbidv 2476 . . . . . . . . 9 (𝑢 = 𝑟 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟))
100 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑞Q𝑟Q)) → 𝑟Q)
101100ad3antrrr 492 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟Q)
102 simpr 110 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 (2nd𝐴))
103 simprrr 540 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → 𝑣 <Q 𝑟)
104103adantr 276 . . . . . . . . . 10 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑣 <Q 𝑟)
105 breq1 4001 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 <Q 𝑟𝑣 <Q 𝑟))
106105rspcev 2839 . . . . . . . . . 10 ((𝑣 (2nd𝐴) ∧ 𝑣 <Q 𝑟) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
107102, 104, 106syl2anc 411 . . . . . . . . 9 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → ∃𝑤 (2nd𝐴)𝑤 <Q 𝑟)
10899, 101, 107elrabd 2893 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
109 suplocexpr.b . . . . . . . . . . . 12 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
110109suplocexprlem2b 7688 . . . . . . . . . . 11 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
11138, 110syl 14 . . . . . . . . . 10 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
112111eleq2d 2245 . . . . . . . . 9 (𝜑 → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
113112ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → (𝑟 ∈ (2nd𝐵) ↔ 𝑟 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
114108, 113mpbird 167 . . . . . . 7 (((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) ∧ 𝑣 (2nd𝐴)) → 𝑟 ∈ (2nd𝐵))
115114ex 115 . . . . . 6 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑣 (2nd𝐴) → 𝑟 ∈ (2nd𝐵)))
116115orim2d 788 . . . . 5 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → ((𝑞 (1st𝐴) ∨ 𝑣 (2nd𝐴)) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
11797, 116mpd 13 . . . 4 ((((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) ∧ (𝑣Q ∧ (𝑞 <Q 𝑣𝑣 <Q 𝑟))) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
1183, 117rexlimddv 2597 . . 3 (((𝜑 ∧ (𝑞Q𝑟Q)) ∧ 𝑞 <Q 𝑟) → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵)))
119118ex 115 . 2 ((𝜑 ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
120119ralrimivva 2557 1 (𝜑 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 (1st𝐴) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wex 1490  wcel 2146  {cab 2161  wral 2453  wrex 2454  {crab 2457  Vcvv 2735  wss 3127  cop 3592   cuni 3805   cint 3840   class class class wbr 3998  cima 4623  Fun wfun 5202  ontowfo 5206  cfv 5208  1st c1st 6129  2nd c2nd 6130  Qcnq 7254   <Q cltq 7259  Pcnp 7265  <P cltp 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-inp 7440  df-iltp 7444
This theorem is referenced by:  suplocexprlemex  7696
  Copyright terms: Public domain W3C validator