| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthomlem | GIF version | ||
| Description: Lemma for sbthom 16325. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbthomlem.lpo | ⊢ (𝜑 → ω ∈ Omni) |
| sbthomlem.y | ⊢ (𝜑 → 𝑌 ⊆ {∅}) |
| sbthomlem.f | ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) |
| Ref | Expression |
|---|---|
| sbthomlem | ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthomlem.lpo | . . . 4 ⊢ (𝜑 → ω ∈ Omni) | |
| 2 | sbthomlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) | |
| 3 | f1ofo 5575 | . . . . 5 ⊢ (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω–onto→(𝑌 ⊔ ω)) |
| 5 | 1, 4 | fodjuomni 7304 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 ∨ 𝑌 = ∅)) |
| 6 | 5 | orcomd 734 | . 2 ⊢ (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌)) |
| 7 | sbthomlem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ {∅}) | |
| 8 | sssnm 3831 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅})) | |
| 9 | 7, 8 | syl5ibcom 155 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 → 𝑌 = {∅})) |
| 10 | 9 | orim2d 793 | . 2 ⊢ (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅}))) |
| 11 | 6, 10 | mpd 13 | 1 ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 {csn 3666 ωcom 4679 –onto→wfo 5312 –1-1-onto→wf1o 5313 ⊔ cdju 7192 Omnicomni 7289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-1o 6552 df-2o 6553 df-map 6787 df-dju 7193 df-inl 7202 df-inr 7203 df-omni 7290 |
| This theorem is referenced by: sbthom 16325 |
| Copyright terms: Public domain | W3C validator |