![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthomlem | GIF version |
Description: Lemma for sbthom 15516. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
Ref | Expression |
---|---|
sbthomlem.lpo | ⊢ (𝜑 → ω ∈ Omni) |
sbthomlem.y | ⊢ (𝜑 → 𝑌 ⊆ {∅}) |
sbthomlem.f | ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) |
Ref | Expression |
---|---|
sbthomlem | ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthomlem.lpo | . . . 4 ⊢ (𝜑 → ω ∈ Omni) | |
2 | sbthomlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) | |
3 | f1ofo 5507 | . . . . 5 ⊢ (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω–onto→(𝑌 ⊔ ω)) |
5 | 1, 4 | fodjuomni 7208 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 ∨ 𝑌 = ∅)) |
6 | 5 | orcomd 730 | . 2 ⊢ (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌)) |
7 | sbthomlem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ {∅}) | |
8 | sssnm 3780 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅})) | |
9 | 7, 8 | syl5ibcom 155 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 → 𝑌 = {∅})) |
10 | 9 | orim2d 789 | . 2 ⊢ (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅}))) |
11 | 6, 10 | mpd 13 | 1 ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 {csn 3618 ωcom 4622 –onto→wfo 5252 –1-1-onto→wf1o 5253 ⊔ cdju 7096 Omnicomni 7193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-1o 6469 df-2o 6470 df-map 6704 df-dju 7097 df-inl 7106 df-inr 7107 df-omni 7194 |
This theorem is referenced by: sbthom 15516 |
Copyright terms: Public domain | W3C validator |