| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthomlem | GIF version | ||
| Description: Lemma for sbthom 16080. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbthomlem.lpo | ⊢ (𝜑 → ω ∈ Omni) |
| sbthomlem.y | ⊢ (𝜑 → 𝑌 ⊆ {∅}) |
| sbthomlem.f | ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) |
| Ref | Expression |
|---|---|
| sbthomlem | ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthomlem.lpo | . . . 4 ⊢ (𝜑 → ω ∈ Omni) | |
| 2 | sbthomlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) | |
| 3 | f1ofo 5538 | . . . . 5 ⊢ (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω)) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω–onto→(𝑌 ⊔ ω)) |
| 5 | 1, 4 | fodjuomni 7263 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 ∨ 𝑌 = ∅)) |
| 6 | 5 | orcomd 731 | . 2 ⊢ (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌)) |
| 7 | sbthomlem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ {∅}) | |
| 8 | sssnm 3798 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅})) | |
| 9 | 7, 8 | syl5ibcom 155 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 → 𝑌 = {∅})) |
| 10 | 9 | orim2d 790 | . 2 ⊢ (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅}))) |
| 11 | 6, 10 | mpd 13 | 1 ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3168 ∅c0 3462 {csn 3635 ωcom 4643 –onto→wfo 5275 –1-1-onto→wf1o 5276 ⊔ cdju 7151 Omnicomni 7248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-1o 6512 df-2o 6513 df-map 6747 df-dju 7152 df-inl 7161 df-inr 7162 df-omni 7249 |
| This theorem is referenced by: sbthom 16080 |
| Copyright terms: Public domain | W3C validator |