![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthomlem | GIF version |
Description: Lemma for sbthom 14859. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
Ref | Expression |
---|---|
sbthomlem.lpo | ⊢ (𝜑 → ω ∈ Omni) |
sbthomlem.y | ⊢ (𝜑 → 𝑌 ⊆ {∅}) |
sbthomlem.f | ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) |
Ref | Expression |
---|---|
sbthomlem | ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthomlem.lpo | . . . 4 ⊢ (𝜑 → ω ∈ Omni) | |
2 | sbthomlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) | |
3 | f1ofo 5470 | . . . . 5 ⊢ (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω–onto→(𝑌 ⊔ ω)) |
5 | 1, 4 | fodjuomni 7149 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 ∨ 𝑌 = ∅)) |
6 | 5 | orcomd 729 | . 2 ⊢ (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌)) |
7 | sbthomlem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ {∅}) | |
8 | sssnm 3756 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅})) | |
9 | 7, 8 | syl5ibcom 155 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 → 𝑌 = {∅})) |
10 | 9 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅}))) |
11 | 6, 10 | mpd 13 | 1 ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ⊆ wss 3131 ∅c0 3424 {csn 3594 ωcom 4591 –onto→wfo 5216 –1-1-onto→wf1o 5217 ⊔ cdju 7038 Omnicomni 7134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-1o 6419 df-2o 6420 df-map 6652 df-dju 7039 df-inl 7048 df-inr 7049 df-omni 7135 |
This theorem is referenced by: sbthom 14859 |
Copyright terms: Public domain | W3C validator |