Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthomlem GIF version

Theorem sbthomlem 14858
Description: Lemma for sbthom 14859. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
Hypotheses
Ref Expression
sbthomlem.lpo (𝜑 → ω ∈ Omni)
sbthomlem.y (𝜑𝑌 ⊆ {∅})
sbthomlem.f (𝜑𝐹:ω–1-1-onto→(𝑌 ⊔ ω))
Assertion
Ref Expression
sbthomlem (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅}))

Proof of Theorem sbthomlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbthomlem.lpo . . . 4 (𝜑 → ω ∈ Omni)
2 sbthomlem.f . . . . 5 (𝜑𝐹:ω–1-1-onto→(𝑌 ⊔ ω))
3 f1ofo 5470 . . . . 5 (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω))
42, 3syl 14 . . . 4 (𝜑𝐹:ω–onto→(𝑌 ⊔ ω))
51, 4fodjuomni 7149 . . 3 (𝜑 → (∃𝑧 𝑧𝑌𝑌 = ∅))
65orcomd 729 . 2 (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧𝑌))
7 sbthomlem.y . . . 4 (𝜑𝑌 ⊆ {∅})
8 sssnm 3756 . . . 4 (∃𝑧 𝑧𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅}))
97, 8syl5ibcom 155 . . 3 (𝜑 → (∃𝑧 𝑧𝑌𝑌 = {∅}))
109orim2d 788 . 2 (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅})))
116, 10mpd 13 1 (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wex 1492  wcel 2148  wss 3131  c0 3424  {csn 3594  ωcom 4591  ontowfo 5216  1-1-ontowf1o 5217  cdju 7038  Omnicomni 7134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-1o 6419  df-2o 6420  df-map 6652  df-dju 7039  df-inl 7048  df-inr 7049  df-omni 7135
This theorem is referenced by:  sbthom  14859
  Copyright terms: Public domain W3C validator