Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > sbthomlem | GIF version |
Description: Lemma for sbthom 14315. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
Ref | Expression |
---|---|
sbthomlem.lpo | ⊢ (𝜑 → ω ∈ Omni) |
sbthomlem.y | ⊢ (𝜑 → 𝑌 ⊆ {∅}) |
sbthomlem.f | ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) |
Ref | Expression |
---|---|
sbthomlem | ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthomlem.lpo | . . . 4 ⊢ (𝜑 → ω ∈ Omni) | |
2 | sbthomlem.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) | |
3 | f1ofo 5460 | . . . . 5 ⊢ (𝐹:ω–1-1-onto→(𝑌 ⊔ ω) → 𝐹:ω–onto→(𝑌 ⊔ ω)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω–onto→(𝑌 ⊔ ω)) |
5 | 1, 4 | fodjuomni 7137 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 ∨ 𝑌 = ∅)) |
6 | 5 | orcomd 729 | . 2 ⊢ (𝜑 → (𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌)) |
7 | sbthomlem.y | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ {∅}) | |
8 | sssnm 3750 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑌 → (𝑌 ⊆ {∅} ↔ 𝑌 = {∅})) | |
9 | 7, 8 | syl5ibcom 155 | . . 3 ⊢ (𝜑 → (∃𝑧 𝑧 ∈ 𝑌 → 𝑌 = {∅})) |
10 | 9 | orim2d 788 | . 2 ⊢ (𝜑 → ((𝑌 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑌) → (𝑌 = ∅ ∨ 𝑌 = {∅}))) |
11 | 6, 10 | mpd 13 | 1 ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∃wex 1490 ∈ wcel 2146 ⊆ wss 3127 ∅c0 3420 {csn 3589 ωcom 4583 –onto→wfo 5206 –1-1-onto→wf1o 5207 ⊔ cdju 7026 Omnicomni 7122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-1o 6407 df-2o 6408 df-map 6640 df-dju 7027 df-inl 7036 df-inr 7037 df-omni 7123 |
This theorem is referenced by: sbthom 14315 |
Copyright terms: Public domain | W3C validator |