| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 3822 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 〈cop 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 |
| This theorem is referenced by: oteq1 3831 oteq2 3832 opth 4286 cbvoprab2 6028 djuf1olem 7167 dfplpq2 7480 ltexnqq 7534 nnanq0 7584 addpinq1 7590 prarloclemlo 7620 prarloclem3 7623 prarloclem5 7626 prsrriota 7914 caucvgsrlemfv 7917 caucvgsr 7928 pitonnlem2 7973 pitonn 7974 recidpirq 7984 ax1rid 8003 axrnegex 8005 nntopi 8020 axcaucvglemval 8023 fseq1m1p1 10230 frecuzrdglem 10569 frecuzrdgg 10574 frecuzrdgdomlem 10575 frecuzrdgfunlem 10577 frecuzrdgsuctlem 10581 pfxswrd 11171 fsum2dlemstep 11795 fprod2dlemstep 11983 ennnfonelemp1 12827 ennnfonelemnn0 12843 setscomd 12923 imasaddvallemg 13197 |
| Copyright terms: Public domain | W3C validator |