| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 3809 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: oteq1 3818 oteq2 3819 opth 4271 cbvoprab2 5999 djuf1olem 7128 dfplpq2 7438 ltexnqq 7492 nnanq0 7542 addpinq1 7548 prarloclemlo 7578 prarloclem3 7581 prarloclem5 7584 prsrriota 7872 caucvgsrlemfv 7875 caucvgsr 7886 pitonnlem2 7931 pitonn 7932 recidpirq 7942 ax1rid 7961 axrnegex 7963 nntopi 7978 axcaucvglemval 7981 fseq1m1p1 10187 frecuzrdglem 10520 frecuzrdgg 10525 frecuzrdgdomlem 10526 frecuzrdgfunlem 10528 frecuzrdgsuctlem 10532 fsum2dlemstep 11616 fprod2dlemstep 11804 ennnfonelemp1 12648 ennnfonelemnn0 12664 setscomd 12744 imasaddvallemg 13017 |
| Copyright terms: Public domain | W3C validator |