ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1d GIF version

Theorem opeq1d 3747
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq1d (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)

Proof of Theorem opeq1d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq1 3741 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  cop 3563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569
This theorem is referenced by:  oteq1  3750  oteq2  3751  opth  4196  cbvoprab2  5888  djuf1olem  6987  dfplpq2  7257  ltexnqq  7311  nnanq0  7361  addpinq1  7367  prarloclemlo  7397  prarloclem3  7400  prarloclem5  7403  prsrriota  7691  caucvgsrlemfv  7694  caucvgsr  7705  pitonnlem2  7750  pitonn  7751  recidpirq  7761  ax1rid  7780  axrnegex  7782  nntopi  7797  axcaucvglemval  7800  fseq1m1p1  9979  frecuzrdglem  10292  frecuzrdgg  10297  frecuzrdgdomlem  10298  frecuzrdgfunlem  10300  frecuzrdgsuctlem  10304  fsum2dlemstep  11313  fprod2dlemstep  11501  ennnfonelemp1  12107  ennnfonelemnn0  12123
  Copyright terms: Public domain W3C validator