Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 3741 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 〈cop 3563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 |
This theorem is referenced by: oteq1 3750 oteq2 3751 opth 4196 cbvoprab2 5888 djuf1olem 6987 dfplpq2 7257 ltexnqq 7311 nnanq0 7361 addpinq1 7367 prarloclemlo 7397 prarloclem3 7400 prarloclem5 7403 prsrriota 7691 caucvgsrlemfv 7694 caucvgsr 7705 pitonnlem2 7750 pitonn 7751 recidpirq 7761 ax1rid 7780 axrnegex 7782 nntopi 7797 axcaucvglemval 7800 fseq1m1p1 9979 frecuzrdglem 10292 frecuzrdgg 10297 frecuzrdgdomlem 10298 frecuzrdgfunlem 10300 frecuzrdgsuctlem 10304 fsum2dlemstep 11313 fprod2dlemstep 11501 ennnfonelemp1 12107 ennnfonelemnn0 12123 |
Copyright terms: Public domain | W3C validator |