ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq1d GIF version

Theorem opeq1d 3815
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq1d (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)

Proof of Theorem opeq1d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq1 3809 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cop 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632
This theorem is referenced by:  oteq1  3818  oteq2  3819  opth  4271  cbvoprab2  5999  djuf1olem  7128  dfplpq2  7440  ltexnqq  7494  nnanq0  7544  addpinq1  7550  prarloclemlo  7580  prarloclem3  7583  prarloclem5  7586  prsrriota  7874  caucvgsrlemfv  7877  caucvgsr  7888  pitonnlem2  7933  pitonn  7934  recidpirq  7944  ax1rid  7963  axrnegex  7965  nntopi  7980  axcaucvglemval  7983  fseq1m1p1  10189  frecuzrdglem  10522  frecuzrdgg  10527  frecuzrdgdomlem  10528  frecuzrdgfunlem  10530  frecuzrdgsuctlem  10534  fsum2dlemstep  11618  fprod2dlemstep  11806  ennnfonelemp1  12650  ennnfonelemnn0  12666  setscomd  12746  imasaddvallemg  13019
  Copyright terms: Public domain W3C validator