Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 3765 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: oteq1 3774 oteq2 3775 opth 4222 cbvoprab2 5926 djuf1olem 7030 dfplpq2 7316 ltexnqq 7370 nnanq0 7420 addpinq1 7426 prarloclemlo 7456 prarloclem3 7459 prarloclem5 7462 prsrriota 7750 caucvgsrlemfv 7753 caucvgsr 7764 pitonnlem2 7809 pitonn 7810 recidpirq 7820 ax1rid 7839 axrnegex 7841 nntopi 7856 axcaucvglemval 7859 fseq1m1p1 10051 frecuzrdglem 10367 frecuzrdgg 10372 frecuzrdgdomlem 10373 frecuzrdgfunlem 10375 frecuzrdgsuctlem 10379 fsum2dlemstep 11397 fprod2dlemstep 11585 ennnfonelemp1 12361 ennnfonelemnn0 12377 |
Copyright terms: Public domain | W3C validator |