![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 3780 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 〈cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: oteq1 3789 oteq2 3790 opth 4239 cbvoprab2 5950 djuf1olem 7054 dfplpq2 7355 ltexnqq 7409 nnanq0 7459 addpinq1 7465 prarloclemlo 7495 prarloclem3 7498 prarloclem5 7501 prsrriota 7789 caucvgsrlemfv 7792 caucvgsr 7803 pitonnlem2 7848 pitonn 7849 recidpirq 7859 ax1rid 7878 axrnegex 7880 nntopi 7895 axcaucvglemval 7898 fseq1m1p1 10097 frecuzrdglem 10413 frecuzrdgg 10418 frecuzrdgdomlem 10419 frecuzrdgfunlem 10421 frecuzrdgsuctlem 10425 fsum2dlemstep 11444 fprod2dlemstep 11632 ennnfonelemp1 12409 ennnfonelemnn0 12425 setscomd 12505 imasaddvallemg 12741 |
Copyright terms: Public domain | W3C validator |