| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 3857 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: oteq1 3866 oteq2 3867 opth 4323 cbvoprab2 6083 djuf1olem 7228 dfplpq2 7549 ltexnqq 7603 nnanq0 7653 addpinq1 7659 prarloclemlo 7689 prarloclem3 7692 prarloclem5 7695 prsrriota 7983 caucvgsrlemfv 7986 caucvgsr 7997 pitonnlem2 8042 pitonn 8043 recidpirq 8053 ax1rid 8072 axrnegex 8074 nntopi 8089 axcaucvglemval 8092 fseq1m1p1 10299 frecuzrdglem 10641 frecuzrdgg 10646 frecuzrdgdomlem 10647 frecuzrdgfunlem 10649 frecuzrdgsuctlem 10653 pfxswrd 11246 swrdccat 11275 swrdccat3blem 11279 fsum2dlemstep 11953 fprod2dlemstep 12141 ennnfonelemp1 12985 ennnfonelemnn0 13001 setscomd 13081 imasaddvallemg 13356 |
| Copyright terms: Public domain | W3C validator |