| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 3809 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: oteq1 3818 oteq2 3819 opth 4271 cbvoprab2 5999 djuf1olem 7128 dfplpq2 7440 ltexnqq 7494 nnanq0 7544 addpinq1 7550 prarloclemlo 7580 prarloclem3 7583 prarloclem5 7586 prsrriota 7874 caucvgsrlemfv 7877 caucvgsr 7888 pitonnlem2 7933 pitonn 7934 recidpirq 7944 ax1rid 7963 axrnegex 7965 nntopi 7980 axcaucvglemval 7983 fseq1m1p1 10189 frecuzrdglem 10522 frecuzrdgg 10527 frecuzrdgdomlem 10528 frecuzrdgfunlem 10530 frecuzrdgsuctlem 10534 fsum2dlemstep 11618 fprod2dlemstep 11806 ennnfonelemp1 12650 ennnfonelemnn0 12666 setscomd 12746 imasaddvallemg 13019 |
| Copyright terms: Public domain | W3C validator |