| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq1 3856 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: oteq1 3865 oteq2 3866 opth 4322 cbvoprab2 6068 djuf1olem 7208 dfplpq2 7529 ltexnqq 7583 nnanq0 7633 addpinq1 7639 prarloclemlo 7669 prarloclem3 7672 prarloclem5 7675 prsrriota 7963 caucvgsrlemfv 7966 caucvgsr 7977 pitonnlem2 8022 pitonn 8023 recidpirq 8033 ax1rid 8052 axrnegex 8054 nntopi 8069 axcaucvglemval 8072 fseq1m1p1 10279 frecuzrdglem 10620 frecuzrdgg 10625 frecuzrdgdomlem 10626 frecuzrdgfunlem 10628 frecuzrdgsuctlem 10632 pfxswrd 11224 swrdccat 11253 swrdccat3blem 11257 fsum2dlemstep 11931 fprod2dlemstep 12119 ennnfonelemp1 12963 ennnfonelemnn0 12979 setscomd 13059 imasaddvallemg 13334 |
| Copyright terms: Public domain | W3C validator |