Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 3758 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: oteq1 3767 oteq2 3768 opth 4215 cbvoprab2 5915 djuf1olem 7018 dfplpq2 7295 ltexnqq 7349 nnanq0 7399 addpinq1 7405 prarloclemlo 7435 prarloclem3 7438 prarloclem5 7441 prsrriota 7729 caucvgsrlemfv 7732 caucvgsr 7743 pitonnlem2 7788 pitonn 7789 recidpirq 7799 ax1rid 7818 axrnegex 7820 nntopi 7835 axcaucvglemval 7838 fseq1m1p1 10030 frecuzrdglem 10346 frecuzrdgg 10351 frecuzrdgdomlem 10352 frecuzrdgfunlem 10354 frecuzrdgsuctlem 10358 fsum2dlemstep 11375 fprod2dlemstep 11563 ennnfonelemp1 12339 ennnfonelemnn0 12355 |
Copyright terms: Public domain | W3C validator |