![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq1d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq1d | ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq1 3622 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 〈cop 3449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 df-op 3455 |
This theorem is referenced by: oteq1 3631 oteq2 3632 opth 4064 cbvoprab2 5721 djuf1olem 6745 dfplpq2 6913 ltexnqq 6967 nnanq0 7017 addpinq1 7023 prarloclemlo 7053 prarloclem3 7056 prarloclem5 7059 prsrriota 7333 caucvgsrlemfv 7336 caucvgsr 7347 pitonnlem2 7384 pitonn 7385 recidpirq 7395 ax1rid 7412 axrnegex 7414 nntopi 7429 axcaucvglemval 7432 fseq1m1p1 9509 frecuzrdglem 9818 frecuzrdgg 9823 frecuzrdgdomlem 9824 frecuzrdgfunlem 9826 frecuzrdgsuctlem 9830 fsum2dlemstep 10828 |
Copyright terms: Public domain | W3C validator |