ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2 GIF version

Theorem opeq2 3781
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opeq2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
21anbi2d 464 . . . . 5 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V)))
3 eqidd 2178 . . . . . . 7 (𝐴 = 𝐵 → {𝐶} = {𝐶})
4 preq2 3672 . . . . . . 7 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
53, 4preq12d 3679 . . . . . 6 (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}})
65eleq2d 2247 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
72, 6anbi12d 473 . . . 4 (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
8 df-3an 980 . . . 4 ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}))
9 df-3an 980 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
107, 8, 93bitr4g 223 . . 3 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
1110abbidv 2295 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})})
12 df-op 3603 . 2 𝐶, 𝐴⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})}
13 df-op 3603 . 2 𝐶, 𝐵⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}
1411, 12, 133eqtr4g 2235 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  {cab 2163  Vcvv 2739  {csn 3594  {cpr 3595  cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by:  opeq12  3782  opeq2i  3784  opeq2d  3787  oteq2  3790  oteq3  3791  breq2  4009  cbvopab2  4079  cbvopab2v  4082  opthg  4240  eqvinop  4245  opelopabsb  4262  opelxp  4658  opabid2  4760  elrn2g  4819  opeldm  4832  opeldmg  4834  elrn2  4871  opelresg  4916  iss  4955  elimasng  4998  issref  5013  dmsnopg  5102  cnvsng  5116  elxp4  5118  elxp5  5119  dffun5r  5230  funopg  5252  f1osng  5504  tz6.12f  5546  fsn  5690  fsng  5691  fvsng  5714  oveq2  5885  cbvoprab2  5950  ovg  6015  opabex3d  6124  opabex3  6125  op1stg  6153  op2ndg  6154  oprssdmm  6174  op1steq  6182  dfoprab4f  6196  tfrlemibxssdm  6330  tfr1onlembxssdm  6346  tfrcllembxssdm  6359  elixpsn  6737  ixpsnf1o  6738  mapsnen  6813  xpsnen  6823  xpassen  6832  xpf1o  6846  djulclr  7050  djurclr  7051  djulcl  7052  djurcl  7053  djulclb  7056  inl11  7066  djuss  7071  1stinl  7075  2ndinl  7076  1stinr  7077  2ndinr  7078  elreal  7829  ax1rid  7878  fseq1p1m1  10096  imasaddfnlemg  12740  cnmpt21  13830  djucllem  14591
  Copyright terms: Public domain W3C validator