| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 2 | 1 | anbi2d 464 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
| 3 | eqidd 2197 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
| 4 | preq2 3701 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 5 | 3, 4 | preq12d 3708 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
| 6 | 5 | eleq2d 2266 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
| 7 | 2, 6 | anbi12d 473 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
| 8 | df-3an 982 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
| 9 | df-3an 982 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
| 10 | 7, 8, 9 | 3bitr4g 223 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
| 11 | 10 | abbidv 2314 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
| 12 | df-op 3632 | . 2 ⊢ 〈𝐶, 𝐴〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
| 13 | df-op 3632 | . 2 ⊢ 〈𝐶, 𝐵〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
| 14 | 11, 12, 13 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 {csn 3623 {cpr 3624 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opeq12 3811 opeq2i 3813 opeq2d 3816 oteq2 3819 oteq3 3820 breq2 4038 cbvopab2 4108 cbvopab2v 4111 opthg 4272 eqvinop 4277 opelopabsb 4295 opelxp 4694 opabid2 4798 elrn2g 4857 opeldm 4870 opeldmg 4872 elrn2 4909 opelresg 4954 iss 4993 elimasng 5038 issref 5053 dmsnopg 5142 cnvsng 5156 elxp4 5158 elxp5 5159 dffun5r 5271 funopg 5293 f1osng 5548 tz6.12f 5590 fsn 5737 fsng 5738 fvsng 5761 oveq2 5933 cbvoprab2 5999 ovg 6066 opabex3d 6187 opabex3 6188 op1stg 6217 op2ndg 6218 oprssdmm 6238 op1steq 6246 dfoprab4f 6260 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 elixpsn 6803 ixpsnf1o 6804 mapsnen 6879 xpsnen 6889 xpassen 6898 xpf1o 6914 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djulclb 7130 inl11 7140 djuss 7145 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 elreal 7912 ax1rid 7961 fseq1p1m1 10186 imasaddfnlemg 13016 cnmpt21 14611 djucllem 15530 |
| Copyright terms: Public domain | W3C validator |