Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi2d 460 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
3 | eqidd 2166 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
4 | preq2 3654 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
5 | 3, 4 | preq12d 3661 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
6 | 5 | eleq2d 2236 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
7 | 2, 6 | anbi12d 465 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
8 | df-3an 970 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
9 | df-3an 970 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
10 | 7, 8, 9 | 3bitr4g 222 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
11 | 10 | abbidv 2284 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
12 | df-op 3585 | . 2 ⊢ 〈𝐶, 𝐴〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
13 | df-op 3585 | . 2 ⊢ 〈𝐶, 𝐵〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
14 | 11, 12, 13 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 {csn 3576 {cpr 3577 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opeq12 3760 opeq2i 3762 opeq2d 3765 oteq2 3768 oteq3 3769 breq2 3986 cbvopab2 4056 cbvopab2v 4059 opthg 4216 eqvinop 4221 opelopabsb 4238 opelxp 4634 opabid2 4735 elrn2g 4794 opeldm 4807 opeldmg 4809 elrn2 4846 opelresg 4891 iss 4930 elimasng 4972 issref 4986 dmsnopg 5075 cnvsng 5089 elxp4 5091 elxp5 5092 dffun5r 5200 funopg 5222 f1osng 5473 tz6.12f 5515 fsn 5657 fsng 5658 fvsng 5681 oveq2 5850 cbvoprab2 5915 ovg 5980 opabex3d 6089 opabex3 6090 op1stg 6118 op2ndg 6119 oprssdmm 6139 op1steq 6147 dfoprab4f 6161 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 elixpsn 6701 ixpsnf1o 6702 mapsnen 6777 xpsnen 6787 xpassen 6796 xpf1o 6810 djulclr 7014 djurclr 7015 djulcl 7016 djurcl 7017 djulclb 7020 inl11 7030 djuss 7035 1stinl 7039 2ndinl 7040 1stinr 7041 2ndinr 7042 elreal 7769 ax1rid 7818 fseq1p1m1 10029 cnmpt21 12941 djucllem 13691 |
Copyright terms: Public domain | W3C validator |