![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq2 | ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi2d 464 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
3 | eqidd 2178 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
4 | preq2 3672 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
5 | 3, 4 | preq12d 3679 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
6 | 5 | eleq2d 2247 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
7 | 2, 6 | anbi12d 473 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
8 | df-3an 980 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
9 | df-3an 980 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
10 | 7, 8, 9 | 3bitr4g 223 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
11 | 10 | abbidv 2295 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
12 | df-op 3603 | . 2 ⊢ ⟨𝐶, 𝐴⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
13 | df-op 3603 | . 2 ⊢ ⟨𝐶, 𝐵⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
14 | 11, 12, 13 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 {cab 2163 Vcvv 2739 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: opeq12 3782 opeq2i 3784 opeq2d 3787 oteq2 3790 oteq3 3791 breq2 4009 cbvopab2 4079 cbvopab2v 4082 opthg 4240 eqvinop 4245 opelopabsb 4262 opelxp 4658 opabid2 4760 elrn2g 4819 opeldm 4832 opeldmg 4834 elrn2 4871 opelresg 4916 iss 4955 elimasng 4998 issref 5013 dmsnopg 5102 cnvsng 5116 elxp4 5118 elxp5 5119 dffun5r 5230 funopg 5252 f1osng 5504 tz6.12f 5546 fsn 5690 fsng 5691 fvsng 5714 oveq2 5885 cbvoprab2 5950 ovg 6015 opabex3d 6124 opabex3 6125 op1stg 6153 op2ndg 6154 oprssdmm 6174 op1steq 6182 dfoprab4f 6196 tfrlemibxssdm 6330 tfr1onlembxssdm 6346 tfrcllembxssdm 6359 elixpsn 6737 ixpsnf1o 6738 mapsnen 6813 xpsnen 6823 xpassen 6832 xpf1o 6846 djulclr 7050 djurclr 7051 djulcl 7052 djurcl 7053 djulclb 7056 inl11 7066 djuss 7071 1stinl 7075 2ndinl 7076 1stinr 7077 2ndinr 7078 elreal 7829 ax1rid 7878 fseq1p1m1 10096 imasaddfnlemg 12740 cnmpt21 13830 djucllem 14591 |
Copyright terms: Public domain | W3C validator |