ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2 GIF version

Theorem opeq2 3857
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opeq2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
21anbi2d 464 . . . . 5 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V)))
3 eqidd 2230 . . . . . . 7 (𝐴 = 𝐵 → {𝐶} = {𝐶})
4 preq2 3744 . . . . . . 7 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
53, 4preq12d 3751 . . . . . 6 (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}})
65eleq2d 2299 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
72, 6anbi12d 473 . . . 4 (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
8 df-3an 1004 . . . 4 ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}))
9 df-3an 1004 . . . 4 ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))
107, 8, 93bitr4g 223 . . 3 (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})))
1110abbidv 2347 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})})
12 df-op 3675 . 2 𝐶, 𝐴⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})}
13 df-op 3675 . 2 𝐶, 𝐵⟩ = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}
1411, 12, 133eqtr4g 2287 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  opeq12  3858  opeq2i  3860  opeq2d  3863  oteq2  3866  oteq3  3867  breq2  4086  cbvopab2  4157  cbvopab2v  4160  opthg  4323  eqvinop  4328  opelopabsb  4347  opelxp  4748  opabid2  4852  elrn2g  4911  opeldm  4925  opeldmg  4927  elrn2  4965  opelresg  5011  iss  5050  elimasng  5095  issref  5110  dmsnopg  5199  cnvsng  5213  elxp4  5215  elxp5  5216  dffun5r  5329  funopg  5351  f1osng  5613  tz6.12f  5655  fsn  5806  fsng  5807  fvsng  5834  oveq2  6008  cbvoprab2  6076  ovg  6143  opabex3d  6264  opabex3  6265  op1stg  6294  op2ndg  6295  oprssdmm  6315  op1steq  6323  dfoprab4f  6337  tfrlemibxssdm  6471  tfr1onlembxssdm  6487  tfrcllembxssdm  6500  elixpsn  6880  ixpsnf1o  6881  mapsnen  6962  xpsnen  6976  xpassen  6985  xpf1o  7001  djulclr  7212  djurclr  7213  djulcl  7214  djurcl  7215  djulclb  7218  inl11  7228  djuss  7233  1stinl  7237  2ndinl  7238  1stinr  7239  2ndinr  7240  elreal  8011  ax1rid  8060  fseq1p1m1  10286  pfxval  11201  swrdccatin1  11252  swrdccat3blem  11266  imasaddfnlemg  13342  cnmpt21  14959  djucllem  16122
  Copyright terms: Public domain W3C validator