![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi2d 464 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
3 | eqidd 2194 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
4 | preq2 3697 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
5 | 3, 4 | preq12d 3704 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
6 | 5 | eleq2d 2263 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
7 | 2, 6 | anbi12d 473 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
8 | df-3an 982 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
9 | df-3an 982 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
10 | 7, 8, 9 | 3bitr4g 223 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
11 | 10 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
12 | df-op 3628 | . 2 ⊢ 〈𝐶, 𝐴〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
13 | df-op 3628 | . 2 ⊢ 〈𝐶, 𝐵〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
14 | 11, 12, 13 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 {csn 3619 {cpr 3620 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: opeq12 3807 opeq2i 3809 opeq2d 3812 oteq2 3815 oteq3 3816 breq2 4034 cbvopab2 4104 cbvopab2v 4107 opthg 4268 eqvinop 4273 opelopabsb 4291 opelxp 4690 opabid2 4794 elrn2g 4853 opeldm 4866 opeldmg 4868 elrn2 4905 opelresg 4950 iss 4989 elimasng 5034 issref 5049 dmsnopg 5138 cnvsng 5152 elxp4 5154 elxp5 5155 dffun5r 5267 funopg 5289 f1osng 5542 tz6.12f 5584 fsn 5731 fsng 5732 fvsng 5755 oveq2 5927 cbvoprab2 5992 ovg 6059 opabex3d 6175 opabex3 6176 op1stg 6205 op2ndg 6206 oprssdmm 6226 op1steq 6234 dfoprab4f 6248 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 elixpsn 6791 ixpsnf1o 6792 mapsnen 6867 xpsnen 6877 xpassen 6886 xpf1o 6902 djulclr 7110 djurclr 7111 djulcl 7112 djurcl 7113 djulclb 7116 inl11 7126 djuss 7131 1stinl 7135 2ndinl 7136 1stinr 7137 2ndinr 7138 elreal 7890 ax1rid 7939 fseq1p1m1 10163 imasaddfnlemg 12900 cnmpt21 14470 djucllem 15362 |
Copyright terms: Public domain | W3C validator |