![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opeq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2177 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
2 | 1 | anbi2d 457 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
3 | eqidd 2116 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
4 | preq2 3567 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
5 | 3, 4 | preq12d 3574 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
6 | 5 | eleq2d 2184 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
7 | 2, 6 | anbi12d 462 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
8 | df-3an 947 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
9 | df-3an 947 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
10 | 7, 8, 9 | 3bitr4g 222 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
11 | 10 | abbidv 2232 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
12 | df-op 3502 | . 2 ⊢ 〈𝐶, 𝐴〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
13 | df-op 3502 | . 2 ⊢ 〈𝐶, 𝐵〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
14 | 11, 12, 13 | 3eqtr4g 2172 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 {cab 2101 Vcvv 2657 {csn 3493 {cpr 3494 〈cop 3496 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-un 3041 df-sn 3499 df-pr 3500 df-op 3502 |
This theorem is referenced by: opeq12 3673 opeq2i 3675 opeq2d 3678 oteq2 3681 oteq3 3682 breq2 3899 cbvopab2 3962 cbvopab2v 3965 opthg 4120 eqvinop 4125 opelopabsb 4142 opelxp 4529 opabid2 4630 elrn2g 4689 opeldm 4702 opeldmg 4704 elrn2 4741 opelresg 4784 iss 4823 elimasng 4865 issref 4879 dmsnopg 4968 cnvsng 4982 elxp4 4984 elxp5 4985 dffun5r 5093 funopg 5115 f1osng 5364 tz6.12f 5404 fsn 5546 fsng 5547 fvsng 5570 oveq2 5736 cbvoprab2 5798 ovg 5863 opabex3d 5973 opabex3 5974 op1stg 6002 op2ndg 6003 oprssdmm 6023 op1steq 6031 dfoprab4f 6045 tfrlemibxssdm 6178 tfr1onlembxssdm 6194 tfrcllembxssdm 6207 elixpsn 6583 ixpsnf1o 6584 mapsnen 6659 xpsnen 6668 xpassen 6677 xpf1o 6691 djulclr 6886 djurclr 6887 djulcl 6888 djurcl 6889 djulclb 6892 inl11 6902 djuss 6907 1stinl 6911 2ndinl 6912 1stinr 6913 2ndinr 6914 elreal 7563 ax1rid 7612 fseq1p1m1 9767 cnmpt21 12302 djucllem 12699 |
Copyright terms: Public domain | W3C validator |