| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2 | GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opeq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 2 | 1 | anbi2d 464 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V))) |
| 3 | eqidd 2230 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶} = {𝐶}) | |
| 4 | preq2 3744 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 5 | 3, 4 | preq12d 3751 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {{𝐶}, {𝐶, 𝐴}} = {{𝐶}, {𝐶, 𝐵}}) |
| 6 | 5 | eleq2d 2299 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ {{𝐶}, {𝐶, 𝐴}} ↔ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) |
| 7 | 2, 6 | anbi12d 473 | . . . 4 ⊢ (𝐴 = 𝐵 → (((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
| 8 | df-3an 1004 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ ((𝐶 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})) | |
| 9 | df-3an 1004 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}) ↔ ((𝐶 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})) | |
| 10 | 7, 8, 9 | 3bitr4g 223 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}}) ↔ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}}))) |
| 11 | 10 | abbidv 2347 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})}) |
| 12 | df-op 3675 | . 2 ⊢ 〈𝐶, 𝐴〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐴 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐴}})} | |
| 13 | df-op 3675 | . 2 ⊢ 〈𝐶, 𝐵〉 = {𝑥 ∣ (𝐶 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐶}, {𝐶, 𝐵}})} | |
| 14 | 11, 12, 13 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 {csn 3666 {cpr 3667 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opeq12 3858 opeq2i 3860 opeq2d 3863 oteq2 3866 oteq3 3867 breq2 4086 cbvopab2 4157 cbvopab2v 4160 opthg 4323 eqvinop 4328 opelopabsb 4347 opelxp 4748 opabid2 4852 elrn2g 4911 opeldm 4925 opeldmg 4927 elrn2 4965 opelresg 5011 iss 5050 elimasng 5095 issref 5110 dmsnopg 5199 cnvsng 5213 elxp4 5215 elxp5 5216 dffun5r 5329 funopg 5351 f1osng 5613 tz6.12f 5655 fsn 5806 fsng 5807 fvsng 5834 oveq2 6008 cbvoprab2 6076 ovg 6143 opabex3d 6264 opabex3 6265 op1stg 6294 op2ndg 6295 oprssdmm 6315 op1steq 6323 dfoprab4f 6337 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 elixpsn 6880 ixpsnf1o 6881 mapsnen 6962 xpsnen 6976 xpassen 6985 xpf1o 7001 djulclr 7212 djurclr 7213 djulcl 7214 djurcl 7215 djulclb 7218 inl11 7228 djuss 7233 1stinl 7237 2ndinl 7238 1stinr 7239 2ndinr 7240 elreal 8011 ax1rid 8060 fseq1p1m1 10286 pfxval 11201 swrdccatin1 11252 swrdccat3blem 11266 imasaddfnlemg 13342 cnmpt21 14959 djucllem 16122 |
| Copyright terms: Public domain | W3C validator |