ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriim GIF version

Theorem exmidontriim 7292
Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
Assertion
Ref Expression
exmidontriim (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontriim
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2257 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2 equequ1 1726 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
3 eleq2 2260 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
41, 2, 33orbi123d 1322 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
54ralbidv 2497 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
65imbi2d 230 . . . 4 (𝑥 = 𝑧 → ((EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))))
7 simplll 533 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑥 ∈ On)
8 simpr 110 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑎 ∈ On)
9 simplr 528 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → EXMID)
10 simpllr 534 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
11 pm2.27 40 . . . . . . . . . . 11 (EXMID → ((EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1211ralimdv 2565 . . . . . . . . . 10 (EXMID → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1312ad2antlr 489 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1410, 13mpd 13 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
157, 8, 9, 14exmidontriimlem4 7291 . . . . . . 7 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
1615ralrimiva 2570 . . . . . 6 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
17 eleq2 2260 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥𝑎𝑥𝑦))
18 equequ2 1727 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥 = 𝑎𝑥 = 𝑦))
19 eleq1w 2257 . . . . . . . 8 (𝑎 = 𝑦 → (𝑎𝑥𝑦𝑥))
2017, 18, 193orbi123d 1322 . . . . . . 7 (𝑎 = 𝑦 → ((𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2120cbvralv 2729 . . . . . 6 (∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2216, 21sylib 122 . . . . 5 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2322exp31 364 . . . 4 (𝑥 ∈ On → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
246, 23tfis2 4621 . . 3 (𝑥 ∈ On → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2524impcom 125 . 2 ((EXMID𝑥 ∈ On) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2625ralrimiva 2570 1 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979  wcel 2167  wral 2475  EXMIDwem 4227  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-uni 3840  df-tr 4132  df-exmid 4228  df-iord 4401  df-on 4403
This theorem is referenced by:  exmidontri  7306  onntri51  7307  exmidontri2or  7310
  Copyright terms: Public domain W3C validator