ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriim GIF version

Theorem exmidontriim 7353
Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
Assertion
Ref Expression
exmidontriim (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontriim
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2267 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2 equequ1 1736 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
3 eleq2 2270 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
41, 2, 33orbi123d 1324 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
54ralbidv 2507 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
65imbi2d 230 . . . 4 (𝑥 = 𝑧 → ((EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))))
7 simplll 533 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑥 ∈ On)
8 simpr 110 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑎 ∈ On)
9 simplr 528 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → EXMID)
10 simpllr 534 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
11 pm2.27 40 . . . . . . . . . . 11 (EXMID → ((EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1211ralimdv 2575 . . . . . . . . . 10 (EXMID → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1312ad2antlr 489 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1410, 13mpd 13 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
157, 8, 9, 14exmidontriimlem4 7352 . . . . . . 7 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
1615ralrimiva 2580 . . . . . 6 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
17 eleq2 2270 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥𝑎𝑥𝑦))
18 equequ2 1737 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥 = 𝑎𝑥 = 𝑦))
19 eleq1w 2267 . . . . . . . 8 (𝑎 = 𝑦 → (𝑎𝑥𝑦𝑥))
2017, 18, 193orbi123d 1324 . . . . . . 7 (𝑎 = 𝑦 → ((𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2120cbvralv 2739 . . . . . 6 (∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2216, 21sylib 122 . . . . 5 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2322exp31 364 . . . 4 (𝑥 ∈ On → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
246, 23tfis2 4641 . . 3 (𝑥 ∈ On → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2524impcom 125 . 2 ((EXMID𝑥 ∈ On) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2625ralrimiva 2580 1 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 980  wcel 2177  wral 2485  EXMIDwem 4246  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-uni 3857  df-tr 4151  df-exmid 4247  df-iord 4421  df-on 4423
This theorem is referenced by:  exmidontri  7370  onntri51  7371  exmidontri2or  7374
  Copyright terms: Public domain W3C validator