ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriim GIF version

Theorem exmidontriim 7285
Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
Assertion
Ref Expression
exmidontriim (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontriim
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2254 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2 equequ1 1723 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
3 eleq2 2257 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
41, 2, 33orbi123d 1322 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
54ralbidv 2494 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
65imbi2d 230 . . . 4 (𝑥 = 𝑧 → ((EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))))
7 simplll 533 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑥 ∈ On)
8 simpr 110 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑎 ∈ On)
9 simplr 528 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → EXMID)
10 simpllr 534 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
11 pm2.27 40 . . . . . . . . . . 11 (EXMID → ((EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1211ralimdv 2562 . . . . . . . . . 10 (EXMID → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1312ad2antlr 489 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1410, 13mpd 13 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
157, 8, 9, 14exmidontriimlem4 7284 . . . . . . 7 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
1615ralrimiva 2567 . . . . . 6 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
17 eleq2 2257 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥𝑎𝑥𝑦))
18 equequ2 1724 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥 = 𝑎𝑥 = 𝑦))
19 eleq1w 2254 . . . . . . . 8 (𝑎 = 𝑦 → (𝑎𝑥𝑦𝑥))
2017, 18, 193orbi123d 1322 . . . . . . 7 (𝑎 = 𝑦 → ((𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2120cbvralv 2726 . . . . . 6 (∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2216, 21sylib 122 . . . . 5 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2322exp31 364 . . . 4 (𝑥 ∈ On → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
246, 23tfis2 4617 . . 3 (𝑥 ∈ On → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2524impcom 125 . 2 ((EXMID𝑥 ∈ On) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2625ralrimiva 2567 1 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979  wcel 2164  wral 2472  EXMIDwem 4223  Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399
This theorem is referenced by:  exmidontri  7299  onntri51  7300  exmidontri2or  7303
  Copyright terms: Public domain W3C validator