| Step | Hyp | Ref
| Expression |
| 1 | | eleq1w 2257 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) |
| 2 | | equequ1 1726 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
| 3 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧)) |
| 4 | 1, 2, 3 | 3orbi123d 1322 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 5 | 4 | ralbidv 2497 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 6 | 5 | imbi2d 230 |
. . . 4
⊢ (𝑥 = 𝑧 → ((EXMID →
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) ↔ (EXMID →
∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)))) |
| 7 | | simplll 533 |
. . . . . . . 8
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑥 ∈ On) |
| 8 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑎 ∈ On) |
| 9 | | simplr 528 |
. . . . . . . 8
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) →
EXMID) |
| 10 | | simpllr 534 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 11 | | pm2.27 40 |
. . . . . . . . . . 11
⊢
(EXMID → ((EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 12 | 11 | ralimdv 2565 |
. . . . . . . . . 10
⊢
(EXMID → (∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 13 | 12 | ad2antlr 489 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) →
(∀𝑧 ∈ 𝑥 (EXMID →
∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) → ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) |
| 14 | 10, 13 | mpd 13 |
. . . . . . . 8
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) |
| 15 | 7, 8, 9, 14 | exmidontriimlem4 7307 |
. . . . . . 7
⊢ ((((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (𝑥 ∈ 𝑎 ∨ 𝑥 = 𝑎 ∨ 𝑎 ∈ 𝑥)) |
| 16 | 15 | ralrimiva 2570 |
. . . . . 6
⊢ (((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) →
∀𝑎 ∈ On (𝑥 ∈ 𝑎 ∨ 𝑥 = 𝑎 ∨ 𝑎 ∈ 𝑥)) |
| 17 | | eleq2 2260 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → (𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝑦)) |
| 18 | | equequ2 1727 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → (𝑥 = 𝑎 ↔ 𝑥 = 𝑦)) |
| 19 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → (𝑎 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 20 | 17, 18, 19 | 3orbi123d 1322 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → ((𝑥 ∈ 𝑎 ∨ 𝑥 = 𝑎 ∨ 𝑎 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) |
| 21 | 20 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑎 ∈ On
(𝑥 ∈ 𝑎 ∨ 𝑥 = 𝑎 ∨ 𝑎 ∈ 𝑥) ↔ ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 22 | 16, 21 | sylib 122 |
. . . . 5
⊢ (((𝑥 ∈ On ∧ ∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧))) ∧ EXMID) →
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 23 | 22 | exp31 364 |
. . . 4
⊢ (𝑥 ∈ On → (∀𝑧 ∈ 𝑥 (EXMID → ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) → (EXMID →
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)))) |
| 24 | 6, 23 | tfis2 4622 |
. . 3
⊢ (𝑥 ∈ On →
(EXMID → ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) |
| 25 | 24 | impcom 125 |
. 2
⊢
((EXMID ∧ 𝑥 ∈ On) → ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
| 26 | 25 | ralrimiva 2570 |
1
⊢
(EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |