ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriim GIF version

Theorem exmidontriim 7189
Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.)
Assertion
Ref Expression
exmidontriim (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidontriim
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2231 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
2 equequ1 1705 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
3 eleq2 2234 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
41, 2, 33orbi123d 1306 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
54ralbidv 2470 . . . . 5 (𝑥 = 𝑧 → (∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
65imbi2d 229 . . . 4 (𝑥 = 𝑧 → ((EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))))
7 simplll 528 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑥 ∈ On)
8 simpr 109 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → 𝑎 ∈ On)
9 simplr 525 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → EXMID)
10 simpllr 529 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
11 pm2.27 40 . . . . . . . . . . 11 (EXMID → ((EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1211ralimdv 2538 . . . . . . . . . 10 (EXMID → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1312ad2antlr 486 . . . . . . . . 9 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)))
1410, 13mpd 13 . . . . . . . 8 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → ∀𝑧𝑥𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
157, 8, 9, 14exmidontriimlem4 7188 . . . . . . 7 ((((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) ∧ 𝑎 ∈ On) → (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
1615ralrimiva 2543 . . . . . 6 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥))
17 eleq2 2234 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥𝑎𝑥𝑦))
18 equequ2 1706 . . . . . . . 8 (𝑎 = 𝑦 → (𝑥 = 𝑎𝑥 = 𝑦))
19 eleq1w 2231 . . . . . . . 8 (𝑎 = 𝑦 → (𝑎𝑥𝑦𝑥))
2017, 18, 193orbi123d 1306 . . . . . . 7 (𝑎 = 𝑦 → ((𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2120cbvralv 2696 . . . . . 6 (∀𝑎 ∈ On (𝑥𝑎𝑥 = 𝑎𝑎𝑥) ↔ ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2216, 21sylib 121 . . . . 5 (((𝑥 ∈ On ∧ ∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))) ∧ EXMID) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2322exp31 362 . . . 4 (𝑥 ∈ On → (∀𝑧𝑥 (EXMID → ∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧)) → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
246, 23tfis2 4567 . . 3 (𝑥 ∈ On → (EXMID → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2524impcom 124 . 2 ((EXMID𝑥 ∈ On) → ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2625ralrimiva 2543 1 (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 972  wcel 2141  wral 2448  EXMIDwem 4178  Oncon0 4346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-uni 3795  df-tr 4086  df-exmid 4179  df-iord 4349  df-on 4351
This theorem is referenced by:  exmidontri  7203  onntri51  7204  exmidontri2or  7207
  Copyright terms: Public domain W3C validator