ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioopnf GIF version

Theorem elioopnf 10109
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioopnf (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))

Proof of Theorem elioopnf
StepHypRef Expression
1 pnfxr 8145 . . 3 +∞ ∈ ℝ*
2 elioo2 10063 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
31, 2mpan2 425 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
4 df-3an 983 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
5 ltpnf 9922 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
65adantr 276 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞)
76pm4.71i 391 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
84, 7bitr4i 187 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
93, 8bitrdi 196 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2177   class class class wbr 4051  (class class class)co 5957  cr 7944  +∞cpnf 8124  *cxr 8126   < clt 8127  (,)cioo 10030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-ioo 10034
This theorem is referenced by:  reopnap  15093
  Copyright terms: Public domain W3C validator