ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicopnf GIF version

Theorem elicopnf 9969
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
elicopnf (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))

Proof of Theorem elicopnf
StepHypRef Expression
1 pnfxr 8010 . . 3 +∞ ∈ ℝ*
2 elico2 9937 . . 3 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
31, 2mpan2 425 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
4 ltpnf 9780 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
54adantr 276 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 < +∞)
65pm4.71i 391 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
7 df-3an 980 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
86, 7bitr4i 187 . 2 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞))
93, 8bitr4di 198 1 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4004  (class class class)co 5875  cr 7810  +∞cpnf 7989  *cxr 7991   < clt 7992  cle 7993  [,)cico 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-ico 9894
This theorem is referenced by:  elrege0  9976  rexico  11230
  Copyright terms: Public domain W3C validator