Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucexb | GIF version |
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.) |
Ref | Expression |
---|---|
sucexb | ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexb 4427 | . 2 ⊢ ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V) | |
2 | snexg 4170 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
3 | 2 | pm4.71i 389 | . 2 ⊢ (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V)) |
4 | df-suc 4356 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | 4 | eleq1i 2236 | . 2 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
6 | 1, 3, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {csn 3583 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-suc 4356 |
This theorem is referenced by: sucexg 4482 sucelon 4487 onsucelsucr 4492 sucunielr 4494 peano2b 4599 |
Copyright terms: Public domain | W3C validator |