ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexb GIF version

Theorem sucexb 4543
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 4487 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snexg 4227 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
32pm4.71i 391 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 4416 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2270 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 212 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2175  Vcvv 2771  cun 3163  {csn 3632  suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-suc 4416
This theorem is referenced by:  sucexg  4544  onsucb  4549  onsucelsucr  4554  sucunielr  4556  peano2b  4661
  Copyright terms: Public domain W3C validator