ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexb GIF version

Theorem sucexb 4558
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb (𝐴 ∈ V ↔ suc 𝐴 ∈ V)

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 4502 . 2 ((𝐴 ∈ V ∧ {𝐴} ∈ V) ↔ (𝐴 ∪ {𝐴}) ∈ V)
2 snexg 4239 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
32pm4.71i 391 . 2 (𝐴 ∈ V ↔ (𝐴 ∈ V ∧ {𝐴} ∈ V))
4 df-suc 4431 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
54eleq1i 2272 . 2 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
61, 3, 53bitr4i 212 1 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2177  Vcvv 2773  cun 3168  {csn 3638  suc csuc 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-suc 4431
This theorem is referenced by:  sucexg  4559  onsucb  4564  onsucelsucr  4569  sucunielr  4571  peano2b  4676
  Copyright terms: Public domain W3C validator