| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqreznegel | GIF version | ||
| Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| eqreznegel | ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → -𝑤 ∈ ℤ)) | |
| 2 | recn 8128 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℝ → 𝑤 ∈ ℂ) | |
| 3 | negid 8389 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0) | |
| 4 | 0z 9453 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℤ | |
| 5 | 3, 4 | eqeltrdi 2320 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ) |
| 6 | 5 | pm4.71i 391 | . . . . . . . . . 10 ⊢ (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ)) |
| 7 | zrevaddcl 9493 | . . . . . . . . . 10 ⊢ (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ)) | |
| 8 | 6, 7 | bitrid 192 | . . . . . . . . 9 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ)) |
| 9 | 2, 8 | imbitrid 154 | . . . . . . . 8 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)) |
| 10 | 1, 9 | syl6 33 | . . . . . . 7 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))) |
| 11 | 10 | com23 78 | . . . . . 6 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤 ∈ 𝐴 → 𝑤 ∈ ℤ))) |
| 12 | 11 | impd 254 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ)) |
| 13 | simpr 110 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) | |
| 14 | 13 | a1i 9 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴)) |
| 15 | 12, 14 | jcad 307 | . . . 4 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
| 16 | zre 9446 | . . . . 5 ⊢ (𝑤 ∈ ℤ → 𝑤 ∈ ℝ) | |
| 17 | 16 | anim1i 340 | . . . 4 ⊢ ((𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
| 18 | 15, 17 | impbid1 142 | . . 3 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
| 19 | negeq 8335 | . . . . 5 ⊢ (𝑧 = 𝑤 → -𝑧 = -𝑤) | |
| 20 | 19 | eleq1d 2298 | . . . 4 ⊢ (𝑧 = 𝑤 → (-𝑧 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
| 21 | 20 | elrab 2959 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
| 22 | 20 | elrab 2959 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴)) |
| 23 | 18, 21, 22 | 3bitr4g 223 | . 2 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴})) |
| 24 | 23 | eqrdv 2227 | 1 ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 + caddc 7998 -cneg 8314 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |