![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqreznegel | GIF version |
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
eqreznegel | ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3173 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → -𝑤 ∈ ℤ)) | |
2 | recn 8005 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℝ → 𝑤 ∈ ℂ) | |
3 | negid 8266 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0) | |
4 | 0z 9328 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℤ | |
5 | 3, 4 | eqeltrdi 2284 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ) |
6 | 5 | pm4.71i 391 | . . . . . . . . . 10 ⊢ (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ)) |
7 | zrevaddcl 9367 | . . . . . . . . . 10 ⊢ (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ)) | |
8 | 6, 7 | bitrid 192 | . . . . . . . . 9 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ)) |
9 | 2, 8 | imbitrid 154 | . . . . . . . 8 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)) |
10 | 1, 9 | syl6 33 | . . . . . . 7 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))) |
11 | 10 | com23 78 | . . . . . 6 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤 ∈ 𝐴 → 𝑤 ∈ ℤ))) |
12 | 11 | impd 254 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ)) |
13 | simpr 110 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) | |
14 | 13 | a1i 9 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴)) |
15 | 12, 14 | jcad 307 | . . . 4 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
16 | zre 9321 | . . . . 5 ⊢ (𝑤 ∈ ℤ → 𝑤 ∈ ℝ) | |
17 | 16 | anim1i 340 | . . . 4 ⊢ ((𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
18 | 15, 17 | impbid1 142 | . . 3 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
19 | negeq 8212 | . . . . 5 ⊢ (𝑧 = 𝑤 → -𝑧 = -𝑤) | |
20 | 19 | eleq1d 2262 | . . . 4 ⊢ (𝑧 = 𝑤 → (-𝑧 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
21 | 20 | elrab 2916 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
22 | 20 | elrab 2916 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴)) |
23 | 18, 21, 22 | 3bitr4g 223 | . 2 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴})) |
24 | 23 | eqrdv 2191 | 1 ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {crab 2476 ⊆ wss 3153 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 + caddc 7875 -cneg 8191 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |