ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel GIF version

Theorem eqreznegel 9679
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Distinct variable group:   𝑧,𝐴

Proof of Theorem eqreznegel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . . . . . 8 (𝐴 ⊆ ℤ → (-𝑤𝐴 → -𝑤 ∈ ℤ))
2 recn 8005 . . . . . . . . 9 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3 negid 8266 . . . . . . . . . . . 12 (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0)
4 0z 9328 . . . . . . . . . . . 12 0 ∈ ℤ
53, 4eqeltrdi 2284 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ)
65pm4.71i 391 . . . . . . . . . 10 (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ))
7 zrevaddcl 9367 . . . . . . . . . 10 (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ))
86, 7bitrid 192 . . . . . . . . 9 (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ))
92, 8imbitrid 154 . . . . . . . 8 (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))
101, 9syl6 33 . . . . . . 7 (𝐴 ⊆ ℤ → (-𝑤𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)))
1110com23 78 . . . . . 6 (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤𝐴𝑤 ∈ ℤ)))
1211impd 254 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ))
13 simpr 110 . . . . . 6 ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴)
1413a1i 9 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴))
1512, 14jcad 307 . . . 4 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
16 zre 9321 . . . . 5 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
1716anim1i 340 . . . 4 ((𝑤 ∈ ℤ ∧ -𝑤𝐴) → (𝑤 ∈ ℝ ∧ -𝑤𝐴))
1815, 17impbid1 142 . . 3 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
19 negeq 8212 . . . . 5 (𝑧 = 𝑤 → -𝑧 = -𝑤)
2019eleq1d 2262 . . . 4 (𝑧 = 𝑤 → (-𝑧𝐴 ↔ -𝑤𝐴))
2120elrab 2916 . . 3 (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤𝐴))
2220elrab 2916 . . 3 (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴))
2318, 21, 223bitr4g 223 . 2 (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴}))
2423eqrdv 2191 1 (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {crab 2476  wss 3153  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   + caddc 7875  -cneg 8191  cz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator