ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel GIF version

Theorem eqreznegel 9705
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Distinct variable group:   𝑧,𝐴

Proof of Theorem eqreznegel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3178 . . . . . . . 8 (𝐴 ⊆ ℤ → (-𝑤𝐴 → -𝑤 ∈ ℤ))
2 recn 8029 . . . . . . . . 9 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3 negid 8290 . . . . . . . . . . . 12 (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0)
4 0z 9354 . . . . . . . . . . . 12 0 ∈ ℤ
53, 4eqeltrdi 2287 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ)
65pm4.71i 391 . . . . . . . . . 10 (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ))
7 zrevaddcl 9393 . . . . . . . . . 10 (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ))
86, 7bitrid 192 . . . . . . . . 9 (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ))
92, 8imbitrid 154 . . . . . . . 8 (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))
101, 9syl6 33 . . . . . . 7 (𝐴 ⊆ ℤ → (-𝑤𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)))
1110com23 78 . . . . . 6 (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤𝐴𝑤 ∈ ℤ)))
1211impd 254 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ))
13 simpr 110 . . . . . 6 ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴)
1413a1i 9 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴))
1512, 14jcad 307 . . . 4 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
16 zre 9347 . . . . 5 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
1716anim1i 340 . . . 4 ((𝑤 ∈ ℤ ∧ -𝑤𝐴) → (𝑤 ∈ ℝ ∧ -𝑤𝐴))
1815, 17impbid1 142 . . 3 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
19 negeq 8236 . . . . 5 (𝑧 = 𝑤 → -𝑧 = -𝑤)
2019eleq1d 2265 . . . 4 (𝑧 = 𝑤 → (-𝑧𝐴 ↔ -𝑤𝐴))
2120elrab 2920 . . 3 (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤𝐴))
2220elrab 2920 . . 3 (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴))
2318, 21, 223bitr4g 223 . 2 (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴}))
2423eqrdv 2194 1 (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  wss 3157  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896   + caddc 7899  -cneg 8215  cz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator