Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqreznegel | GIF version |
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
eqreznegel | ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . . . . . 8 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → -𝑤 ∈ ℤ)) | |
2 | recn 7900 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℝ → 𝑤 ∈ ℂ) | |
3 | negid 8159 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0) | |
4 | 0z 9216 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℤ | |
5 | 3, 4 | eqeltrdi 2261 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ) |
6 | 5 | pm4.71i 389 | . . . . . . . . . 10 ⊢ (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ)) |
7 | zrevaddcl 9255 | . . . . . . . . . 10 ⊢ (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ)) | |
8 | 6, 7 | syl5bb 191 | . . . . . . . . 9 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ)) |
9 | 2, 8 | syl5ib 153 | . . . . . . . 8 ⊢ (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)) |
10 | 1, 9 | syl6 33 | . . . . . . 7 ⊢ (𝐴 ⊆ ℤ → (-𝑤 ∈ 𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))) |
11 | 10 | com23 78 | . . . . . 6 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤 ∈ 𝐴 → 𝑤 ∈ ℤ))) |
12 | 11 | impd 252 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ)) |
13 | simpr 109 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴) | |
14 | 13 | a1i 9 | . . . . 5 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → -𝑤 ∈ 𝐴)) |
15 | 12, 14 | jcad 305 | . . . 4 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
16 | zre 9209 | . . . . 5 ⊢ (𝑤 ∈ ℤ → 𝑤 ∈ ℝ) | |
17 | 16 | anim1i 338 | . . . 4 ⊢ ((𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
18 | 15, 17 | impbid1 141 | . . 3 ⊢ (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴))) |
19 | negeq 8105 | . . . . 5 ⊢ (𝑧 = 𝑤 → -𝑧 = -𝑤) | |
20 | 19 | eleq1d 2239 | . . . 4 ⊢ (𝑧 = 𝑤 → (-𝑧 ∈ 𝐴 ↔ -𝑤 ∈ 𝐴)) |
21 | 20 | elrab 2886 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ 𝐴)) |
22 | 20 | elrab 2886 | . . 3 ⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤 ∈ 𝐴)) |
23 | 18, 21, 22 | 3bitr4g 222 | . 2 ⊢ (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴})) |
24 | 23 | eqrdv 2168 | 1 ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {crab 2452 ⊆ wss 3121 (class class class)co 5851 ℂcc 7765 ℝcr 7766 0cc0 7767 + caddc 7770 -cneg 8084 ℤcz 9205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |