Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel GIF version

Theorem eqreznegel 9418
 Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
Distinct variable group:   𝑧,𝐴

Proof of Theorem eqreznegel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel 3091 . . . . . . . 8 (𝐴 ⊆ ℤ → (-𝑤𝐴 → -𝑤 ∈ ℤ))
2 recn 7765 . . . . . . . . 9 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3 negid 8021 . . . . . . . . . . . 12 (𝑤 ∈ ℂ → (𝑤 + -𝑤) = 0)
4 0z 9077 . . . . . . . . . . . 12 0 ∈ ℤ
53, 4eqeltrdi 2230 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑤 + -𝑤) ∈ ℤ)
65pm4.71i 388 . . . . . . . . . 10 (𝑤 ∈ ℂ ↔ (𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ))
7 zrevaddcl 9116 . . . . . . . . . 10 (-𝑤 ∈ ℤ → ((𝑤 ∈ ℂ ∧ (𝑤 + -𝑤) ∈ ℤ) ↔ 𝑤 ∈ ℤ))
86, 7syl5bb 191 . . . . . . . . 9 (-𝑤 ∈ ℤ → (𝑤 ∈ ℂ ↔ 𝑤 ∈ ℤ))
92, 8syl5ib 153 . . . . . . . 8 (-𝑤 ∈ ℤ → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ))
101, 9syl6 33 . . . . . . 7 (𝐴 ⊆ ℤ → (-𝑤𝐴 → (𝑤 ∈ ℝ → 𝑤 ∈ ℤ)))
1110com23 78 . . . . . 6 (𝐴 ⊆ ℤ → (𝑤 ∈ ℝ → (-𝑤𝐴𝑤 ∈ ℤ)))
1211impd 252 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ))
13 simpr 109 . . . . . 6 ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴)
1413a1i 9 . . . . 5 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → -𝑤𝐴))
1512, 14jcad 305 . . . 4 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) → (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
16 zre 9070 . . . . 5 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
1716anim1i 338 . . . 4 ((𝑤 ∈ ℤ ∧ -𝑤𝐴) → (𝑤 ∈ ℝ ∧ -𝑤𝐴))
1815, 17impbid1 141 . . 3 (𝐴 ⊆ ℤ → ((𝑤 ∈ ℝ ∧ -𝑤𝐴) ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴)))
19 negeq 7967 . . . . 5 (𝑧 = 𝑤 → -𝑧 = -𝑤)
2019eleq1d 2208 . . . 4 (𝑧 = 𝑤 → (-𝑧𝐴 ↔ -𝑤𝐴))
2120elrab 2840 . . 3 (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℝ ∧ -𝑤𝐴))
2220elrab 2840 . . 3 (𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴} ↔ (𝑤 ∈ ℤ ∧ -𝑤𝐴))
2318, 21, 223bitr4g 222 . 2 (𝐴 ⊆ ℤ → (𝑤 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑤 ∈ {𝑧 ∈ ℤ ∣ -𝑧𝐴}))
2423eqrdv 2137 1 (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} = {𝑧 ∈ ℤ ∣ -𝑧𝐴})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  {crab 2420   ⊆ wss 3071  (class class class)co 5774  ℂcc 7630  ℝcr 7631  0cc0 7632   + caddc 7635  -cneg 7946  ℤcz 9066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator