![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elioomnf | GIF version |
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
elioomnf | ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 8012 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | elioo2 9919 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) | |
3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴))) |
4 | an32 562 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) | |
5 | df-3an 980 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴)) | |
6 | mnflt 9781 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵) |
8 | 7 | pm4.71i 391 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵)) |
9 | 4, 5, 8 | 3bitr4i 212 | . 2 ⊢ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)) |
10 | 3, 9 | bitrdi 196 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 ∈ wcel 2148 class class class wbr 4003 (class class class)co 5874 ℝcr 7809 -∞cmnf 7988 ℝ*cxr 7989 < clt 7990 (,)cioo 9886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-ioo 9890 |
This theorem is referenced by: reopnap 13931 |
Copyright terms: Public domain | W3C validator |