ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioomnf GIF version

Theorem elioomnf 10152
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioomnf (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)))

Proof of Theorem elioomnf
StepHypRef Expression
1 mnfxr 8191 . . 3 -∞ ∈ ℝ*
2 elioo2 10105 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴)))
31, 2mpan 424 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴)))
4 an32 562 . . 3 (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵))
5 df-3an 1004 . . 3 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴))
6 mnflt 9967 . . . . 5 (𝐵 ∈ ℝ → -∞ < 𝐵)
76adantr 276 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵)
87pm4.71i 391 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵))
94, 5, 83bitr4i 212 . 2 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))
103, 9bitrdi 196 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wcel 2200   class class class wbr 4082  (class class class)co 5994  cr 7986  -∞cmnf 8167  *cxr 8168   < clt 8169  (,)cioo 10072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-ioo 10076
This theorem is referenced by:  reopnap  15205
  Copyright terms: Public domain W3C validator