![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrp2 | GIF version |
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
dfrp2 | ⊢ ℝ+ = (0(,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnf 9782 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞) |
3 | 2 | pm4.71i 391 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) |
4 | df-3an 980 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) | |
5 | 3, 4 | bitr4i 187 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
6 | elrp 9657 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
7 | 0xr 8006 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | pnfxr 8012 | . . . 4 ⊢ +∞ ∈ ℝ* | |
9 | elioo2 9923 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞))) | |
10 | 7, 8, 9 | mp2an 426 | . . 3 ⊢ (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
11 | 5, 6, 10 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ ℝ+ ↔ 𝑥 ∈ (0(,)+∞)) |
12 | 11 | eqriv 2174 | 1 ⊢ ℝ+ = (0(,)+∞) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℝcr 7812 0cc0 7813 +∞cpnf 7991 ℝ*cxr 7993 < clt 7994 ℝ+crp 9655 (,)cioo 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-rp 9656 df-ioo 9894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |