| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrp2 | GIF version | ||
| Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
| Ref | Expression |
|---|---|
| dfrp2 | ⊢ ℝ+ = (0(,)+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnf 9872 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞) |
| 3 | 2 | pm4.71i 391 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) |
| 4 | df-3an 982 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) | |
| 5 | 3, 4 | bitr4i 187 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
| 6 | elrp 9747 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
| 7 | 0xr 8090 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 8 | pnfxr 8096 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 9 | elioo2 10013 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞))) | |
| 10 | 7, 8, 9 | mp2an 426 | . . 3 ⊢ (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
| 11 | 5, 6, 10 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ ℝ+ ↔ 𝑥 ∈ (0(,)+∞)) |
| 12 | 11 | eqriv 2193 | 1 ⊢ ℝ+ = (0(,)+∞) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 0cc0 7896 +∞cpnf 8075 ℝ*cxr 8077 < clt 8078 ℝ+crp 9745 (,)cioo 9980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-rp 9746 df-ioo 9984 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |