ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrp2 GIF version

Theorem dfrp2 10199
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.)
Assertion
Ref Expression
dfrp2 + = (0(,)+∞)

Proof of Theorem dfrp2
StepHypRef Expression
1 ltpnf 9716 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 < +∞)
21adantr 274 . . . . 5 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞)
32pm4.71i 389 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
4 df-3an 970 . . . 4 ((𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞))
53, 4bitr4i 186 . . 3 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
6 elrp 9591 . . 3 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
7 0xr 7945 . . . 4 0 ∈ ℝ*
8 pnfxr 7951 . . . 4 +∞ ∈ ℝ*
9 elioo2 9857 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞)))
107, 8, 9mp2an 423 . . 3 (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < +∞))
115, 6, 103bitr4i 211 . 2 (𝑥 ∈ ℝ+𝑥 ∈ (0(,)+∞))
1211eqriv 2162 1 + = (0(,)+∞)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  +∞cpnf 7930  *cxr 7932   < clt 7933  +crp 9589  (,)cioo 9824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-rp 9590  df-ioo 9828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator