Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfrp2 | GIF version |
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
dfrp2 | ⊢ ℝ+ = (0(,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnf 9716 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
2 | 1 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝑥 < +∞) |
3 | 2 | pm4.71i 389 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) |
4 | df-3an 970 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝑥 < +∞)) | |
5 | 3, 4 | bitr4i 186 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
6 | elrp 9591 | . . 3 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
7 | 0xr 7945 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | pnfxr 7951 | . . . 4 ⊢ +∞ ∈ ℝ* | |
9 | elioo2 9857 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞))) | |
10 | 7, 8, 9 | mp2an 423 | . . 3 ⊢ (𝑥 ∈ (0(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞)) |
11 | 5, 6, 10 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ ℝ+ ↔ 𝑥 ∈ (0(,)+∞)) |
12 | 11 | eqriv 2162 | 1 ⊢ ℝ+ = (0(,)+∞) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 +∞cpnf 7930 ℝ*cxr 7932 < clt 7933 ℝ+crp 9589 (,)cioo 9824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-rp 9590 df-ioo 9828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |