ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmrn GIF version

Theorem imadmrn 4849
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn (𝐴 “ dom 𝐴) = ran 𝐴

Proof of Theorem imadmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2660 . . . . . . 7 𝑥 ∈ V
2 vex 2660 . . . . . . 7 𝑦 ∈ V
31, 2opeldm 4702 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
43pm4.71i 386 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
5 ancom 264 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
64, 5bitr2i 184 . . . 4 ((𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
76exbii 1567 . . 3 (∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
87abbii 2230 . 2 {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
9 dfima3 4842 . 2 (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
10 dfrn3 4688 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
118, 9, 103eqtr4i 2145 1 (𝐴 “ dom 𝐴) = ran 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wex 1451  wcel 1463  {cab 2101  cop 3496  dom cdm 4499  ran crn 4500  cima 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by:  cnvimarndm  4861  foima  5308  f1imacnv  5340  fsn2  5548  resfunexg  5595  funiunfvdm  5618  fnexALT  5965  uniqs2  6443  mapsn  6538  phplem4  6702  phplem4on  6714  retopbas  12512
  Copyright terms: Public domain W3C validator