ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmrn GIF version

Theorem imadmrn 5074
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn (𝐴 “ dom 𝐴) = ran 𝐴

Proof of Theorem imadmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . . 7 𝑥 ∈ V
2 vex 2802 . . . . . . 7 𝑦 ∈ V
31, 2opeldm 4923 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
43pm4.71i 391 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
5 ancom 266 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
64, 5bitr2i 185 . . . 4 ((𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
76exbii 1651 . . 3 (∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
87abbii 2345 . 2 {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
9 dfima3 5067 . 2 (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
10 dfrn3 4908 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
118, 9, 103eqtr4i 2260 1 (𝐴 “ dom 𝐴) = ran 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  wcel 2200  {cab 2215  cop 3669  dom cdm 4716  ran crn 4717  cima 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729
This theorem is referenced by:  cnvimarndm  5088  foima  5549  fimadmfo  5553  f1imacnv  5585  fsn2  5802  resfunexg  5853  funiunfvdm  5880  fnexALT  6246  uniqs2  6732  mapsn  6827  phplem4  7004  phplem4on  7017  retopbas  15182
  Copyright terms: Public domain W3C validator