| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imadmrn | GIF version | ||
| Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opeldm 4926 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 4 | 3 | pm4.71i 391 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
| 5 | ancom 266 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
| 6 | 4, 5 | bitr2i 185 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 7 | 6 | exbii 1651 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | abbii 2345 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| 9 | dfima3 5071 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
| 10 | dfrn3 4911 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
| 11 | 8, 9, 10 | 3eqtr4i 2260 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 〈cop 3669 dom cdm 4719 ran crn 4720 “ cima 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: cnvimarndm 5092 foima 5555 fimadmfo 5559 f1imacnv 5591 fsn2 5811 resfunexg 5864 funiunfvdm 5893 fnexALT 6262 uniqs2 6750 mapsn 6845 phplem4 7024 phplem4on 7037 retopbas 15205 |
| Copyright terms: Public domain | W3C validator |