![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imadmrn | GIF version |
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imadmrn | ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opeldm 4866 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
4 | 3 | pm4.71i 391 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴)) |
5 | ancom 266 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ dom 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
6 | 4, 5 | bitr2i 185 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
7 | 6 | exbii 1616 | . . 3 ⊢ (∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 7 | abbii 2309 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
9 | dfima3 5009 | . 2 ⊢ (𝐴 “ dom 𝐴) = {𝑦 ∣ ∃𝑥(𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
10 | dfrn3 4852 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
11 | 8, 9, 10 | 3eqtr4i 2224 | 1 ⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 〈cop 3622 dom cdm 4660 ran crn 4661 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: cnvimarndm 5030 foima 5482 fimadmfo 5486 f1imacnv 5518 fsn2 5733 resfunexg 5780 funiunfvdm 5807 fnexALT 6165 uniqs2 6651 mapsn 6746 phplem4 6913 phplem4on 6925 retopbas 14702 |
Copyright terms: Public domain | W3C validator |