| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucexg | GIF version | ||
| Description: sucexg 4589 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snexg 16233 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 2 | 1 | pm4.71i 391 | . . 3 ⊢ (𝐴 ∈ 𝑉 ↔ (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
| 4 | bj-unexg 16242 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V) | |
| 5 | df-suc 4461 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 5 | eleq1i 2295 | . . 3 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
| 7 | 6 | biimpri 133 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V) |
| 8 | 3, 4, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {csn 3666 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 df-suc 4461 df-bdc 16162 |
| This theorem is referenced by: bj-sucex 16244 |
| Copyright terms: Public domain | W3C validator |