![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucexg | GIF version |
Description: sucexg 4531 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snexg 15474 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
2 | 1 | pm4.71i 391 | . . 3 ⊢ (𝐴 ∈ 𝑉 ↔ (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
3 | 2 | biimpi 120 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
4 | bj-unexg 15483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V) | |
5 | df-suc 4403 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | eleq1i 2259 | . . 3 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
7 | 6 | biimpri 133 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V) |
8 | 3, 4, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 {csn 3619 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-pr 4239 ax-un 4465 ax-bd0 15375 ax-bdor 15378 ax-bdex 15381 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 ax-bdsep 15446 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-uni 3837 df-suc 4403 df-bdc 15403 |
This theorem is referenced by: bj-sucex 15485 |
Copyright terms: Public domain | W3C validator |