Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucexg GIF version

Theorem bj-sucexg 16243
Description: sucexg 4589 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem bj-sucexg
StepHypRef Expression
1 bj-snexg 16233 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
21pm4.71i 391 . . 3 (𝐴𝑉 ↔ (𝐴𝑉 ∧ {𝐴} ∈ V))
32biimpi 120 . 2 (𝐴𝑉 → (𝐴𝑉 ∧ {𝐴} ∈ V))
4 bj-unexg 16242 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V)
5 df-suc 4461 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
65eleq1i 2295 . . 3 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
76biimpri 133 . 2 ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V)
83, 4, 73syl 17 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  Vcvv 2799  cun 3195  {csn 3666  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-pr 4292  ax-un 4523  ax-bd0 16134  ax-bdor 16137  ax-bdex 16140  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3888  df-suc 4461  df-bdc 16162
This theorem is referenced by:  bj-sucex  16244
  Copyright terms: Public domain W3C validator