Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucexg GIF version

Theorem bj-sucexg 11258
Description: sucexg 4288 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem bj-sucexg
StepHypRef Expression
1 bj-snexg 11248 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
21pm4.71i 383 . . 3 (𝐴𝑉 ↔ (𝐴𝑉 ∧ {𝐴} ∈ V))
32biimpi 118 . 2 (𝐴𝑉 → (𝐴𝑉 ∧ {𝐴} ∈ V))
4 bj-unexg 11257 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V)
5 df-suc 4172 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
65eleq1i 2150 . . 3 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
76biimpri 131 . 2 ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V)
83, 4, 73syl 17 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1436  Vcvv 2615  cun 2986  {csn 3431  suc csuc 4166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-pr 4010  ax-un 4234  ax-bd0 11149  ax-bdor 11152  ax-bdex 11155  ax-bdeq 11156  ax-bdel 11157  ax-bdsb 11158  ax-bdsep 11220
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-rex 2361  df-v 2617  df-un 2992  df-sn 3437  df-pr 3438  df-uni 3637  df-suc 4172  df-bdc 11177
This theorem is referenced by:  bj-sucex  11259
  Copyright terms: Public domain W3C validator