| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucexg | GIF version | ||
| Description: sucexg 4546 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snexg 15848 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 2 | 1 | pm4.71i 391 | . . 3 ⊢ (𝐴 ∈ 𝑉 ↔ (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
| 4 | bj-unexg 15857 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V) | |
| 5 | df-suc 4418 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 6 | 5 | eleq1i 2271 | . . 3 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
| 7 | 6 | biimpri 133 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V) |
| 8 | 3, 4, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 Vcvv 2772 ∪ cun 3164 {csn 3633 suc csuc 4412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-pr 4253 ax-un 4480 ax-bd0 15749 ax-bdor 15752 ax-bdex 15755 ax-bdeq 15756 ax-bdel 15757 ax-bdsb 15758 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-suc 4418 df-bdc 15777 |
| This theorem is referenced by: bj-sucex 15859 |
| Copyright terms: Public domain | W3C validator |