Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucexg | GIF version |
Description: sucexg 4455 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snexg 13446 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
2 | 1 | pm4.71i 389 | . . 3 ⊢ (𝐴 ∈ 𝑉 ↔ (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
3 | 2 | biimpi 119 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
4 | bj-unexg 13455 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V) | |
5 | df-suc 4330 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | eleq1i 2223 | . . 3 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
7 | 6 | biimpri 132 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V) |
8 | 3, 4, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 Vcvv 2712 ∪ cun 3100 {csn 3560 suc csuc 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-pr 4168 ax-un 4392 ax-bd0 13347 ax-bdor 13350 ax-bdex 13353 ax-bdeq 13354 ax-bdel 13355 ax-bdsb 13356 ax-bdsep 13418 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-uni 3773 df-suc 4330 df-bdc 13375 |
This theorem is referenced by: bj-sucex 13457 |
Copyright terms: Public domain | W3C validator |