Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucexg GIF version

Theorem bj-sucexg 15568
Description: sucexg 4534 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sucexg (𝐴𝑉 → suc 𝐴 ∈ V)

Proof of Theorem bj-sucexg
StepHypRef Expression
1 bj-snexg 15558 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
21pm4.71i 391 . . 3 (𝐴𝑉 ↔ (𝐴𝑉 ∧ {𝐴} ∈ V))
32biimpi 120 . 2 (𝐴𝑉 → (𝐴𝑉 ∧ {𝐴} ∈ V))
4 bj-unexg 15567 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V)
5 df-suc 4406 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
65eleq1i 2262 . . 3 (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V)
76biimpri 133 . 2 ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V)
83, 4, 73syl 17 1 (𝐴𝑉 → suc 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763  cun 3155  {csn 3622  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-suc 4406  df-bdc 15487
This theorem is referenced by:  bj-sucex  15569
  Copyright terms: Public domain W3C validator