Proof of Theorem opthreg
Step | Hyp | Ref
| Expression |
1 | | preleq.1 |
. . . . 5
⊢ 𝐴 ∈ V |
2 | 1 | prid1 3689 |
. . . 4
⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | | preleq.3 |
. . . . 5
⊢ 𝐶 ∈ V |
4 | 3 | prid1 3689 |
. . . 4
⊢ 𝐶 ∈ {𝐶, 𝐷} |
5 | | preleq.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
6 | | prexg 4196 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) |
7 | 1, 5, 6 | mp2an 424 |
. . . . 5
⊢ {𝐴, 𝐵} ∈ V |
8 | | preleq.4 |
. . . . . 6
⊢ 𝐷 ∈ V |
9 | | prexg 4196 |
. . . . . 6
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → {𝐶, 𝐷} ∈ V) |
10 | 3, 8, 9 | mp2an 424 |
. . . . 5
⊢ {𝐶, 𝐷} ∈ V |
11 | 1, 7, 3, 10 | preleq 4539 |
. . . 4
⊢ (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
12 | 2, 4, 11 | mpanl12 434 |
. . 3
⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
13 | | preq1 3660 |
. . . . . 6
⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) |
14 | 13 | eqeq1d 2179 |
. . . . 5
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
15 | 5, 8 | preqr2 3756 |
. . . . 5
⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
16 | 14, 15 | syl6bi 162 |
. . . 4
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
17 | 16 | imdistani 443 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
18 | 12, 17 | syl 14 |
. 2
⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
19 | | preq1 3660 |
. . . 4
⊢ (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) |
20 | 19 | adantr 274 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) |
21 | | preq12 3662 |
. . . 4
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
22 | 21 | preq2d 3667 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
23 | 20, 22 | eqtrd 2203 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
24 | 18, 23 | impbii 125 |
1
⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |