ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthreg GIF version

Theorem opthreg 4592
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4573 (via the preleq 4591 step). See df-op 3631 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1 𝐴 ∈ V
preleq.2 𝐵 ∈ V
preleq.3 𝐶 ∈ V
preleq.4 𝐷 ∈ V
Assertion
Ref Expression
opthreg ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5 𝐴 ∈ V
21prid1 3728 . . . 4 𝐴 ∈ {𝐴, 𝐵}
3 preleq.3 . . . . 5 𝐶 ∈ V
43prid1 3728 . . . 4 𝐶 ∈ {𝐶, 𝐷}
5 preleq.2 . . . . . 6 𝐵 ∈ V
6 prexg 4244 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
71, 5, 6mp2an 426 . . . . 5 {𝐴, 𝐵} ∈ V
8 preleq.4 . . . . . 6 𝐷 ∈ V
9 prexg 4244 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → {𝐶, 𝐷} ∈ V)
103, 8, 9mp2an 426 . . . . 5 {𝐶, 𝐷} ∈ V
111, 7, 3, 10preleq 4591 . . . 4 (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
122, 4, 11mpanl12 436 . . 3 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
13 preq1 3699 . . . . . 6 (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵})
1413eqeq1d 2205 . . . . 5 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
155, 8preqr2 3799 . . . . 5 ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)
1614, 15biimtrdi 163 . . . 4 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
1716imdistani 445 . . 3 ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
1812, 17syl 14 . 2 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶𝐵 = 𝐷))
19 preq1 3699 . . . 4 (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
2019adantr 276 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
21 preq12 3701 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
2221preq2d 3706 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2320, 22eqtrd 2229 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2418, 23impbii 126 1 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator