ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12b GIF version

Theorem preq12b 3750
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
Hypotheses
Ref Expression
preq12b.1 𝐴 ∈ V
preq12b.2 𝐵 ∈ V
preq12b.3 𝐶 ∈ V
preq12b.4 𝐷 ∈ V
Assertion
Ref Expression
preq12b ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))

Proof of Theorem preq12b
StepHypRef Expression
1 preq12b.1 . . . . . 6 𝐴 ∈ V
21prid1 3682 . . . . 5 𝐴 ∈ {𝐴, 𝐵}
3 eleq2 2230 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷}))
42, 3mpbii 147 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷})
51elpr 3597 . . . 4 (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷))
64, 5sylib 121 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐴 = 𝐷))
7 preq1 3653 . . . . . . . 8 (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵})
87eqeq1d 2174 . . . . . . 7 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
9 preq12b.2 . . . . . . . 8 𝐵 ∈ V
10 preq12b.4 . . . . . . . 8 𝐷 ∈ V
119, 10preqr2 3749 . . . . . . 7 ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)
128, 11syl6bi 162 . . . . . 6 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
1312com12 30 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷))
1413ancld 323 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷)))
15 prcom 3652 . . . . . . 7 {𝐶, 𝐷} = {𝐷, 𝐶}
1615eqeq2i 2176 . . . . . 6 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶})
17 preq1 3653 . . . . . . . . 9 (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐷, 𝐵})
1817eqeq1d 2174 . . . . . . . 8 (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} ↔ {𝐷, 𝐵} = {𝐷, 𝐶}))
19 preq12b.3 . . . . . . . . 9 𝐶 ∈ V
209, 19preqr2 3749 . . . . . . . 8 ({𝐷, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶)
2118, 20syl6bi 162 . . . . . . 7 (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶))
2221com12 30 . . . . . 6 ({𝐴, 𝐵} = {𝐷, 𝐶} → (𝐴 = 𝐷𝐵 = 𝐶))
2316, 22sylbi 120 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷𝐵 = 𝐶))
2423ancld 323 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → (𝐴 = 𝐷𝐵 = 𝐶)))
2514, 24orim12d 776 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
266, 25mpd 13 . 2 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
27 preq12 3655 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
28 prcom 3652 . . . . 5 {𝐷, 𝐵} = {𝐵, 𝐷}
2917, 28eqtrdi 2215 . . . 4 (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐵, 𝐷})
30 preq1 3653 . . . 4 (𝐵 = 𝐶 → {𝐵, 𝐷} = {𝐶, 𝐷})
3129, 30sylan9eq 2219 . . 3 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
3227, 31jaoi 706 . 2 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷})
3326, 32impbii 125 1 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  Vcvv 2726  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  prel12  3751  opthpr  3752  preq12bg  3753  preqsn  3755  opeqpr  4231  preleq  4532
  Copyright terms: Public domain W3C validator