ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12b GIF version

Theorem preq12b 3757
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
Hypotheses
Ref Expression
preq12b.1 𝐴 ∈ V
preq12b.2 𝐵 ∈ V
preq12b.3 𝐶 ∈ V
preq12b.4 𝐷 ∈ V
Assertion
Ref Expression
preq12b ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))

Proof of Theorem preq12b
StepHypRef Expression
1 preq12b.1 . . . . . 6 𝐴 ∈ V
21prid1 3689 . . . . 5 𝐴 ∈ {𝐴, 𝐵}
3 eleq2 2234 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷}))
42, 3mpbii 147 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷})
51elpr 3604 . . . 4 (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐷))
64, 5sylib 121 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐴 = 𝐷))
7 preq1 3660 . . . . . . . 8 (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵})
87eqeq1d 2179 . . . . . . 7 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
9 preq12b.2 . . . . . . . 8 𝐵 ∈ V
10 preq12b.4 . . . . . . . 8 𝐷 ∈ V
119, 10preqr2 3756 . . . . . . 7 ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)
128, 11syl6bi 162 . . . . . 6 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
1312com12 30 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷))
1413ancld 323 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷)))
15 prcom 3659 . . . . . . 7 {𝐶, 𝐷} = {𝐷, 𝐶}
1615eqeq2i 2181 . . . . . 6 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶})
17 preq1 3660 . . . . . . . . 9 (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐷, 𝐵})
1817eqeq1d 2179 . . . . . . . 8 (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} ↔ {𝐷, 𝐵} = {𝐷, 𝐶}))
19 preq12b.3 . . . . . . . . 9 𝐶 ∈ V
209, 19preqr2 3756 . . . . . . . 8 ({𝐷, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶)
2118, 20syl6bi 162 . . . . . . 7 (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶))
2221com12 30 . . . . . 6 ({𝐴, 𝐵} = {𝐷, 𝐶} → (𝐴 = 𝐷𝐵 = 𝐶))
2316, 22sylbi 120 . . . . 5 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷𝐵 = 𝐶))
2423ancld 323 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → (𝐴 = 𝐷𝐵 = 𝐶)))
2514, 24orim12d 781 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
266, 25mpd 13 . 2 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
27 preq12 3662 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
28 prcom 3659 . . . . 5 {𝐷, 𝐵} = {𝐵, 𝐷}
2917, 28eqtrdi 2219 . . . 4 (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐵, 𝐷})
30 preq1 3660 . . . 4 (𝐵 = 𝐶 → {𝐵, 𝐷} = {𝐶, 𝐷})
3129, 30sylan9eq 2223 . . 3 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
3227, 31jaoi 711 . 2 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷})
3326, 32impbii 125 1 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  Vcvv 2730  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  prel12  3758  opthpr  3759  preq12bg  3760  preqsn  3762  opeqpr  4238  preleq  4539
  Copyright terms: Public domain W3C validator