Proof of Theorem preq12b
Step | Hyp | Ref
| Expression |
1 | | preq12b.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
2 | 1 | prid1 3689 |
. . . . 5
⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | | eleq2 2234 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 ∈ {𝐴, 𝐵} ↔ 𝐴 ∈ {𝐶, 𝐷})) |
4 | 2, 3 | mpbii 147 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐴 ∈ {𝐶, 𝐷}) |
5 | 1 | elpr 3604 |
. . . 4
⊢ (𝐴 ∈ {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
6 | 4, 5 | sylib 121 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
7 | | preq1 3660 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) |
8 | 7 | eqeq1d 2179 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
9 | | preq12b.2 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
10 | | preq12b.4 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
11 | 9, 10 | preqr2 3756 |
. . . . . . 7
⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
12 | 8, 11 | syl6bi 162 |
. . . . . 6
⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
13 | 12 | com12 30 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
14 | 13 | ancld 323 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
15 | | prcom 3659 |
. . . . . . 7
⊢ {𝐶, 𝐷} = {𝐷, 𝐶} |
16 | 15 | eqeq2i 2181 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶}) |
17 | | preq1 3660 |
. . . . . . . . 9
⊢ (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐷, 𝐵}) |
18 | 17 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} ↔ {𝐷, 𝐵} = {𝐷, 𝐶})) |
19 | | preq12b.3 |
. . . . . . . . 9
⊢ 𝐶 ∈ V |
20 | 9, 19 | preqr2 3756 |
. . . . . . . 8
⊢ ({𝐷, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶) |
21 | 18, 20 | syl6bi 162 |
. . . . . . 7
⊢ (𝐴 = 𝐷 → ({𝐴, 𝐵} = {𝐷, 𝐶} → 𝐵 = 𝐶)) |
22 | 21 | com12 30 |
. . . . . 6
⊢ ({𝐴, 𝐵} = {𝐷, 𝐶} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
23 | 16, 22 | sylbi 120 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → 𝐵 = 𝐶)) |
24 | 23 | ancld 323 |
. . . 4
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐷 → (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
25 | 14, 24 | orim12d 781 |
. . 3
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
26 | 6, 25 | mpd 13 |
. 2
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
27 | | preq12 3662 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
28 | | prcom 3659 |
. . . . 5
⊢ {𝐷, 𝐵} = {𝐵, 𝐷} |
29 | 17, 28 | eqtrdi 2219 |
. . . 4
⊢ (𝐴 = 𝐷 → {𝐴, 𝐵} = {𝐵, 𝐷}) |
30 | | preq1 3660 |
. . . 4
⊢ (𝐵 = 𝐶 → {𝐵, 𝐷} = {𝐶, 𝐷}) |
31 | 29, 30 | sylan9eq 2223 |
. . 3
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
32 | 27, 31 | jaoi 711 |
. 2
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
33 | 26, 32 | impbii 125 |
1
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |