ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw GIF version

Theorem exmidpw 7038
Description: Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw (EXMID ↔ 𝒫 1o ≈ 2o)

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6545 . . . . 5 1o = {∅}
2 p0ex 4251 . . . . 5 {∅} ∈ V
31, 2eqeltri 2282 . . . 4 1o ∈ V
43pwex 4246 . . 3 𝒫 1o ∈ V
5 exmid01 4261 . . . . . . . . 9 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
65biimpi 120 . . . . . . . 8 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
7619.21bi 1584 . . . . . . 7 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
81pweqi 3633 . . . . . . . . 9 𝒫 1o = 𝒫 {∅}
98eleq2i 2276 . . . . . . . 8 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
10 velpw 3636 . . . . . . . 8 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
119, 10bitri 184 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
12 vex 2782 . . . . . . . 8 𝑥 ∈ V
1312elpr 3667 . . . . . . 7 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
147, 11, 133imtr4g 205 . . . . . 6 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1514ssrdv 3210 . . . . 5 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
16 pwpw0ss 3862 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 {∅}
1716, 8sseqtrri 3239 . . . . . 6 {∅, {∅}} ⊆ 𝒫 1o
1817a1i 9 . . . . 5 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1915, 18eqssd 3221 . . . 4 (EXMID → 𝒫 1o = {∅, {∅}})
20 df2o2 6547 . . . 4 2o = {∅, {∅}}
2119, 20eqtr4di 2260 . . 3 (EXMID → 𝒫 1o = 2o)
22 eqeng 6887 . . 3 (𝒫 1o ∈ V → (𝒫 1o = 2o → 𝒫 1o ≈ 2o))
234, 21, 22mpsyl 65 . 2 (EXMID → 𝒫 1o ≈ 2o)
24 0nep0 4228 . . . . . . . 8 ∅ ≠ {∅}
25 0ex 4190 . . . . . . . . . . 11 ∅ ∈ V
2625, 2prss 3803 . . . . . . . . . 10 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
2717, 26mpbir 146 . . . . . . . . 9 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
28 en2eqpr 7037 . . . . . . . . . 10 ((𝒫 1o ≈ 2o ∧ ∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
29283expb 1209 . . . . . . . . 9 ((𝒫 1o ≈ 2o ∧ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3027, 29mpan2 425 . . . . . . . 8 (𝒫 1o ≈ 2o → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3124, 30mpi 15 . . . . . . 7 (𝒫 1o ≈ 2o → 𝒫 1o = {∅, {∅}})
3231eleq2d 2279 . . . . . 6 (𝒫 1o ≈ 2o → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
3332, 11, 133bitr3g 222 . . . . 5 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
3433biimpd 144 . . . 4 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3534alrimiv 1900 . . 3 (𝒫 1o ≈ 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3635, 5sylibr 134 . 2 (𝒫 1o ≈ 2oEXMID)
3723, 36impbii 126 1 (EXMID ↔ 𝒫 1o ≈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  wal 1373   = wceq 1375  wcel 2180  wne 2380  Vcvv 2779  wss 3177  c0 3471  𝒫 cpw 3629  {csn 3646  {cpr 3647   class class class wbr 4062  EXMIDwem 4257  1oc1o 6525  2oc2o 6526  cen 6855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-exmid 4258  df-id 4361  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-1o 6532  df-2o 6533  df-en 6858
This theorem is referenced by:  exmidpw2en  7042  pwf1oexmid  16276
  Copyright terms: Public domain W3C validator