ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw GIF version

Theorem exmidpw 6978
Description: Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw (EXMID ↔ 𝒫 1o ≈ 2o)

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6496 . . . . 5 1o = {∅}
2 p0ex 4222 . . . . 5 {∅} ∈ V
31, 2eqeltri 2269 . . . 4 1o ∈ V
43pwex 4217 . . 3 𝒫 1o ∈ V
5 exmid01 4232 . . . . . . . . 9 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
65biimpi 120 . . . . . . . 8 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
7619.21bi 1572 . . . . . . 7 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
81pweqi 3610 . . . . . . . . 9 𝒫 1o = 𝒫 {∅}
98eleq2i 2263 . . . . . . . 8 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
10 velpw 3613 . . . . . . . 8 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
119, 10bitri 184 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
12 vex 2766 . . . . . . . 8 𝑥 ∈ V
1312elpr 3644 . . . . . . 7 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
147, 11, 133imtr4g 205 . . . . . 6 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1514ssrdv 3190 . . . . 5 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
16 pwpw0ss 3835 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 {∅}
1716, 8sseqtrri 3219 . . . . . 6 {∅, {∅}} ⊆ 𝒫 1o
1817a1i 9 . . . . 5 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1915, 18eqssd 3201 . . . 4 (EXMID → 𝒫 1o = {∅, {∅}})
20 df2o2 6498 . . . 4 2o = {∅, {∅}}
2119, 20eqtr4di 2247 . . 3 (EXMID → 𝒫 1o = 2o)
22 eqeng 6834 . . 3 (𝒫 1o ∈ V → (𝒫 1o = 2o → 𝒫 1o ≈ 2o))
234, 21, 22mpsyl 65 . 2 (EXMID → 𝒫 1o ≈ 2o)
24 0nep0 4199 . . . . . . . 8 ∅ ≠ {∅}
25 0ex 4161 . . . . . . . . . . 11 ∅ ∈ V
2625, 2prss 3779 . . . . . . . . . 10 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
2717, 26mpbir 146 . . . . . . . . 9 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
28 en2eqpr 6977 . . . . . . . . . 10 ((𝒫 1o ≈ 2o ∧ ∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
29283expb 1206 . . . . . . . . 9 ((𝒫 1o ≈ 2o ∧ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3027, 29mpan2 425 . . . . . . . 8 (𝒫 1o ≈ 2o → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3124, 30mpi 15 . . . . . . 7 (𝒫 1o ≈ 2o → 𝒫 1o = {∅, {∅}})
3231eleq2d 2266 . . . . . 6 (𝒫 1o ≈ 2o → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
3332, 11, 133bitr3g 222 . . . . 5 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
3433biimpd 144 . . . 4 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3534alrimiv 1888 . . 3 (𝒫 1o ≈ 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3635, 5sylibr 134 . 2 (𝒫 1o ≈ 2oEXMID)
3723, 36impbii 126 1 (EXMID ↔ 𝒫 1o ≈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  wne 2367  Vcvv 2763  wss 3157  c0 3451  𝒫 cpw 3606  {csn 3623  {cpr 3624   class class class wbr 4034  EXMIDwem 4228  1oc1o 6476  2oc2o 6477  cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-exmid 4229  df-id 4329  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-2o 6484  df-en 6809
This theorem is referenced by:  exmidpw2en  6982  pwf1oexmid  15730
  Copyright terms: Public domain W3C validator