ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw GIF version

Theorem exmidpw 6704
Description: Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw (EXMID ↔ 𝒫 1o ≈ 2o)

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6232 . . . . 5 1o = {∅}
2 p0ex 4044 . . . . 5 {∅} ∈ V
31, 2eqeltri 2167 . . . 4 1o ∈ V
43pwex 4039 . . 3 𝒫 1o ∈ V
5 exmid01 4053 . . . . . . . . 9 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
65biimpi 119 . . . . . . . 8 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
7619.21bi 1502 . . . . . . 7 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
81pweqi 3453 . . . . . . . . 9 𝒫 1o = 𝒫 {∅}
98eleq2i 2161 . . . . . . . 8 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
10 selpw 3456 . . . . . . . 8 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
119, 10bitri 183 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
12 vex 2636 . . . . . . . 8 𝑥 ∈ V
1312elpr 3487 . . . . . . 7 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
147, 11, 133imtr4g 204 . . . . . 6 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1514ssrdv 3045 . . . . 5 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
16 pwpw0ss 3670 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 {∅}
1716, 8sseqtr4i 3074 . . . . . 6 {∅, {∅}} ⊆ 𝒫 1o
1817a1i 9 . . . . 5 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1915, 18eqssd 3056 . . . 4 (EXMID → 𝒫 1o = {∅, {∅}})
20 df2o2 6234 . . . 4 2o = {∅, {∅}}
2119, 20syl6eqr 2145 . . 3 (EXMID → 𝒫 1o = 2o)
22 eqeng 6563 . . 3 (𝒫 1o ∈ V → (𝒫 1o = 2o → 𝒫 1o ≈ 2o))
234, 21, 22mpsyl 65 . 2 (EXMID → 𝒫 1o ≈ 2o)
24 0nep0 4021 . . . . . . . 8 ∅ ≠ {∅}
25 0ex 3987 . . . . . . . . . . 11 ∅ ∈ V
2625, 2prss 3615 . . . . . . . . . 10 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
2717, 26mpbir 145 . . . . . . . . 9 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
28 en2eqpr 6703 . . . . . . . . . 10 ((𝒫 1o ≈ 2o ∧ ∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
29283expb 1147 . . . . . . . . 9 ((𝒫 1o ≈ 2o ∧ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3027, 29mpan2 417 . . . . . . . 8 (𝒫 1o ≈ 2o → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3124, 30mpi 15 . . . . . . 7 (𝒫 1o ≈ 2o → 𝒫 1o = {∅, {∅}})
3231eleq2d 2164 . . . . . 6 (𝒫 1o ≈ 2o → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
3332, 11, 133bitr3g 221 . . . . 5 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
3433biimpd 143 . . . 4 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3534alrimiv 1809 . . 3 (𝒫 1o ≈ 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3635, 5sylibr 133 . 2 (𝒫 1o ≈ 2oEXMID)
3723, 36impbii 125 1 (EXMID ↔ 𝒫 1o ≈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 667  wal 1294   = wceq 1296  wcel 1445  wne 2262  Vcvv 2633  wss 3013  c0 3302  𝒫 cpw 3449  {csn 3466  {cpr 3467   class class class wbr 3867  EXMIDwem 4050  1oc1o 6212  2oc2o 6213  cen 6535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-exmid 4051  df-id 4144  df-suc 4222  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1o 6219  df-2o 6220  df-en 6538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator