ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw GIF version

Theorem exmidpw 6874
Description: Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw (EXMID ↔ 𝒫 1o ≈ 2o)

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6397 . . . . 5 1o = {∅}
2 p0ex 4167 . . . . 5 {∅} ∈ V
31, 2eqeltri 2239 . . . 4 1o ∈ V
43pwex 4162 . . 3 𝒫 1o ∈ V
5 exmid01 4177 . . . . . . . . 9 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
65biimpi 119 . . . . . . . 8 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
7619.21bi 1546 . . . . . . 7 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
81pweqi 3563 . . . . . . . . 9 𝒫 1o = 𝒫 {∅}
98eleq2i 2233 . . . . . . . 8 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
10 velpw 3566 . . . . . . . 8 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
119, 10bitri 183 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
12 vex 2729 . . . . . . . 8 𝑥 ∈ V
1312elpr 3597 . . . . . . 7 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
147, 11, 133imtr4g 204 . . . . . 6 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1514ssrdv 3148 . . . . 5 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
16 pwpw0ss 3784 . . . . . . 7 {∅, {∅}} ⊆ 𝒫 {∅}
1716, 8sseqtrri 3177 . . . . . 6 {∅, {∅}} ⊆ 𝒫 1o
1817a1i 9 . . . . 5 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1915, 18eqssd 3159 . . . 4 (EXMID → 𝒫 1o = {∅, {∅}})
20 df2o2 6399 . . . 4 2o = {∅, {∅}}
2119, 20eqtr4di 2217 . . 3 (EXMID → 𝒫 1o = 2o)
22 eqeng 6732 . . 3 (𝒫 1o ∈ V → (𝒫 1o = 2o → 𝒫 1o ≈ 2o))
234, 21, 22mpsyl 65 . 2 (EXMID → 𝒫 1o ≈ 2o)
24 0nep0 4144 . . . . . . . 8 ∅ ≠ {∅}
25 0ex 4109 . . . . . . . . . . 11 ∅ ∈ V
2625, 2prss 3729 . . . . . . . . . 10 ((∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) ↔ {∅, {∅}} ⊆ 𝒫 1o)
2717, 26mpbir 145 . . . . . . . . 9 (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)
28 en2eqpr 6873 . . . . . . . . . 10 ((𝒫 1o ≈ 2o ∧ ∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
29283expb 1194 . . . . . . . . 9 ((𝒫 1o ≈ 2o ∧ (∅ ∈ 𝒫 1o ∧ {∅} ∈ 𝒫 1o)) → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3027, 29mpan2 422 . . . . . . . 8 (𝒫 1o ≈ 2o → (∅ ≠ {∅} → 𝒫 1o = {∅, {∅}}))
3124, 30mpi 15 . . . . . . 7 (𝒫 1o ≈ 2o → 𝒫 1o = {∅, {∅}})
3231eleq2d 2236 . . . . . 6 (𝒫 1o ≈ 2o → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
3332, 11, 133bitr3g 221 . . . . 5 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})))
3433biimpd 143 . . . 4 (𝒫 1o ≈ 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3534alrimiv 1862 . . 3 (𝒫 1o ≈ 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3635, 5sylibr 133 . 2 (𝒫 1o ≈ 2oEXMID)
3723, 36impbii 125 1 (EXMID ↔ 𝒫 1o ≈ 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wal 1341   = wceq 1343  wcel 2136  wne 2336  Vcvv 2726  wss 3116  c0 3409  𝒫 cpw 3559  {csn 3576  {cpr 3577   class class class wbr 3982  EXMIDwem 4173  1oc1o 6377  2oc2o 6378  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-2o 6385  df-en 6707
This theorem is referenced by:  pwf1oexmid  13879
  Copyright terms: Public domain W3C validator