![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dom2 | GIF version |
Description: The power set of 1o dominates 2o. Also see pwpw0ss 3831 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
Ref | Expression |
---|---|
pw1dom2 | ⊢ 2o ≼ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 4195 | . . . 4 ⊢ ∅ ≠ {∅} | |
2 | 0ex 4157 | . . . . 5 ⊢ ∅ ∈ V | |
3 | p0ex 4218 | . . . . 5 ⊢ {∅} ∈ V | |
4 | pr2ne 7254 | . . . . 5 ⊢ ((∅ ∈ V ∧ {∅} ∈ V) → ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅})) | |
5 | 2, 3, 4 | mp2an 426 | . . . 4 ⊢ ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅}) |
6 | 1, 5 | mpbir 146 | . . 3 ⊢ {∅, {∅}} ≈ 2o |
7 | 6 | ensymi 6838 | . 2 ⊢ 2o ≈ {∅, {∅}} |
8 | 3 | pwex 4213 | . . . 4 ⊢ 𝒫 {∅} ∈ V |
9 | pwpw0ss 3831 | . . . 4 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
10 | ssdomg 6834 | . . . 4 ⊢ (𝒫 {∅} ∈ V → ({∅, {∅}} ⊆ 𝒫 {∅} → {∅, {∅}} ≼ 𝒫 {∅})) | |
11 | 8, 9, 10 | mp2 16 | . . 3 ⊢ {∅, {∅}} ≼ 𝒫 {∅} |
12 | df1o2 6484 | . . . 4 ⊢ 1o = {∅} | |
13 | 12 | pweqi 3606 | . . 3 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | 11, 13 | breqtrri 4057 | . 2 ⊢ {∅, {∅}} ≼ 𝒫 1o |
15 | endomtr 6846 | . 2 ⊢ ((2o ≈ {∅, {∅}} ∧ {∅, {∅}} ≼ 𝒫 1o) → 2o ≼ 𝒫 1o) | |
16 | 7, 14, 15 | mp2an 426 | 1 ⊢ 2o ≼ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ⊆ wss 3154 ∅c0 3447 𝒫 cpw 3602 {csn 3619 {cpr 3620 class class class wbr 4030 1oc1o 6464 2oc2o 6465 ≈ cen 6794 ≼ cdom 6795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1o 6471 df-2o 6472 df-er 6589 df-en 6797 df-dom 6798 |
This theorem is referenced by: pwf1oexmid 15560 |
Copyright terms: Public domain | W3C validator |