![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dom2 | GIF version |
Description: The power set of 1o dominates 2o. Also see pwpw0ss 3806 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
Ref | Expression |
---|---|
pw1dom2 | ⊢ 2o ≼ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 4167 | . . . 4 ⊢ ∅ ≠ {∅} | |
2 | 0ex 4132 | . . . . 5 ⊢ ∅ ∈ V | |
3 | p0ex 4190 | . . . . 5 ⊢ {∅} ∈ V | |
4 | pr2ne 7193 | . . . . 5 ⊢ ((∅ ∈ V ∧ {∅} ∈ V) → ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅})) | |
5 | 2, 3, 4 | mp2an 426 | . . . 4 ⊢ ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅}) |
6 | 1, 5 | mpbir 146 | . . 3 ⊢ {∅, {∅}} ≈ 2o |
7 | 6 | ensymi 6784 | . 2 ⊢ 2o ≈ {∅, {∅}} |
8 | 3 | pwex 4185 | . . . 4 ⊢ 𝒫 {∅} ∈ V |
9 | pwpw0ss 3806 | . . . 4 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
10 | ssdomg 6780 | . . . 4 ⊢ (𝒫 {∅} ∈ V → ({∅, {∅}} ⊆ 𝒫 {∅} → {∅, {∅}} ≼ 𝒫 {∅})) | |
11 | 8, 9, 10 | mp2 16 | . . 3 ⊢ {∅, {∅}} ≼ 𝒫 {∅} |
12 | df1o2 6432 | . . . 4 ⊢ 1o = {∅} | |
13 | 12 | pweqi 3581 | . . 3 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | 11, 13 | breqtrri 4032 | . 2 ⊢ {∅, {∅}} ≼ 𝒫 1o |
15 | endomtr 6792 | . 2 ⊢ ((2o ≈ {∅, {∅}} ∧ {∅, {∅}} ≼ 𝒫 1o) → 2o ≼ 𝒫 1o) | |
16 | 7, 14, 15 | mp2an 426 | 1 ⊢ 2o ≼ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2148 ≠ wne 2347 Vcvv 2739 ⊆ wss 3131 ∅c0 3424 𝒫 cpw 3577 {csn 3594 {cpr 3595 class class class wbr 4005 1oc1o 6412 2oc2o 6413 ≈ cen 6740 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1o 6419 df-2o 6420 df-er 6537 df-en 6743 df-dom 6744 |
This theorem is referenced by: pwf1oexmid 14834 |
Copyright terms: Public domain | W3C validator |