![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pw1dom2 | GIF version |
Description: The power set of 1o dominates 2o. Also see pwpw0ss 3819 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
Ref | Expression |
---|---|
pw1dom2 | ⊢ 2o ≼ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 4180 | . . . 4 ⊢ ∅ ≠ {∅} | |
2 | 0ex 4145 | . . . . 5 ⊢ ∅ ∈ V | |
3 | p0ex 4203 | . . . . 5 ⊢ {∅} ∈ V | |
4 | pr2ne 7209 | . . . . 5 ⊢ ((∅ ∈ V ∧ {∅} ∈ V) → ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅})) | |
5 | 2, 3, 4 | mp2an 426 | . . . 4 ⊢ ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅}) |
6 | 1, 5 | mpbir 146 | . . 3 ⊢ {∅, {∅}} ≈ 2o |
7 | 6 | ensymi 6800 | . 2 ⊢ 2o ≈ {∅, {∅}} |
8 | 3 | pwex 4198 | . . . 4 ⊢ 𝒫 {∅} ∈ V |
9 | pwpw0ss 3819 | . . . 4 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
10 | ssdomg 6796 | . . . 4 ⊢ (𝒫 {∅} ∈ V → ({∅, {∅}} ⊆ 𝒫 {∅} → {∅, {∅}} ≼ 𝒫 {∅})) | |
11 | 8, 9, 10 | mp2 16 | . . 3 ⊢ {∅, {∅}} ≼ 𝒫 {∅} |
12 | df1o2 6448 | . . . 4 ⊢ 1o = {∅} | |
13 | 12 | pweqi 3594 | . . 3 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | 11, 13 | breqtrri 4045 | . 2 ⊢ {∅, {∅}} ≼ 𝒫 1o |
15 | endomtr 6808 | . 2 ⊢ ((2o ≈ {∅, {∅}} ∧ {∅, {∅}} ≼ 𝒫 1o) → 2o ≼ 𝒫 1o) | |
16 | 7, 14, 15 | mp2an 426 | 1 ⊢ 2o ≼ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2160 ≠ wne 2360 Vcvv 2752 ⊆ wss 3144 ∅c0 3437 𝒫 cpw 3590 {csn 3607 {cpr 3608 class class class wbr 4018 1oc1o 6428 2oc2o 6429 ≈ cen 6756 ≼ cdom 6757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-1o 6435 df-2o 6436 df-er 6553 df-en 6759 df-dom 6760 |
This theorem is referenced by: pwf1oexmid 15147 |
Copyright terms: Public domain | W3C validator |