Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1dom2 | GIF version |
Description: The power set of 1o dominates 2o. Also see pwpw0ss 3784 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
Ref | Expression |
---|---|
pw1dom2 | ⊢ 2o ≼ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 4144 | . . . 4 ⊢ ∅ ≠ {∅} | |
2 | 0ex 4109 | . . . . 5 ⊢ ∅ ∈ V | |
3 | p0ex 4167 | . . . . 5 ⊢ {∅} ∈ V | |
4 | pr2ne 7148 | . . . . 5 ⊢ ((∅ ∈ V ∧ {∅} ∈ V) → ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅})) | |
5 | 2, 3, 4 | mp2an 423 | . . . 4 ⊢ ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅}) |
6 | 1, 5 | mpbir 145 | . . 3 ⊢ {∅, {∅}} ≈ 2o |
7 | 6 | ensymi 6748 | . 2 ⊢ 2o ≈ {∅, {∅}} |
8 | 3 | pwex 4162 | . . . 4 ⊢ 𝒫 {∅} ∈ V |
9 | pwpw0ss 3784 | . . . 4 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
10 | ssdomg 6744 | . . . 4 ⊢ (𝒫 {∅} ∈ V → ({∅, {∅}} ⊆ 𝒫 {∅} → {∅, {∅}} ≼ 𝒫 {∅})) | |
11 | 8, 9, 10 | mp2 16 | . . 3 ⊢ {∅, {∅}} ≼ 𝒫 {∅} |
12 | df1o2 6397 | . . . 4 ⊢ 1o = {∅} | |
13 | 12 | pweqi 3563 | . . 3 ⊢ 𝒫 1o = 𝒫 {∅} |
14 | 11, 13 | breqtrri 4009 | . 2 ⊢ {∅, {∅}} ≼ 𝒫 1o |
15 | endomtr 6756 | . 2 ⊢ ((2o ≈ {∅, {∅}} ∧ {∅, {∅}} ≼ 𝒫 1o) → 2o ≼ 𝒫 1o) | |
16 | 7, 14, 15 | mp2an 423 | 1 ⊢ 2o ≼ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ≠ wne 2336 Vcvv 2726 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 class class class wbr 3982 1oc1o 6377 2oc2o 6378 ≈ cen 6704 ≼ cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-dom 6708 |
This theorem is referenced by: pwf1oexmid 13879 |
Copyright terms: Public domain | W3C validator |