| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1dom2 | GIF version | ||
| Description: The power set of 1o dominates 2o. Also see pwpw0ss 3883 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
| Ref | Expression |
|---|---|
| pw1dom2 | ⊢ 2o ≼ 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nep0 4249 | . . . 4 ⊢ ∅ ≠ {∅} | |
| 2 | 0ex 4211 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | p0ex 4272 | . . . . 5 ⊢ {∅} ∈ V | |
| 4 | pr2ne 7373 | . . . . 5 ⊢ ((∅ ∈ V ∧ {∅} ∈ V) → ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅})) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . 4 ⊢ ({∅, {∅}} ≈ 2o ↔ ∅ ≠ {∅}) |
| 6 | 1, 5 | mpbir 146 | . . 3 ⊢ {∅, {∅}} ≈ 2o |
| 7 | 6 | ensymi 6942 | . 2 ⊢ 2o ≈ {∅, {∅}} |
| 8 | 3 | pwex 4267 | . . . 4 ⊢ 𝒫 {∅} ∈ V |
| 9 | pwpw0ss 3883 | . . . 4 ⊢ {∅, {∅}} ⊆ 𝒫 {∅} | |
| 10 | ssdomg 6938 | . . . 4 ⊢ (𝒫 {∅} ∈ V → ({∅, {∅}} ⊆ 𝒫 {∅} → {∅, {∅}} ≼ 𝒫 {∅})) | |
| 11 | 8, 9, 10 | mp2 16 | . . 3 ⊢ {∅, {∅}} ≼ 𝒫 {∅} |
| 12 | df1o2 6582 | . . . 4 ⊢ 1o = {∅} | |
| 13 | 12 | pweqi 3653 | . . 3 ⊢ 𝒫 1o = 𝒫 {∅} |
| 14 | 11, 13 | breqtrri 4110 | . 2 ⊢ {∅, {∅}} ≼ 𝒫 1o |
| 15 | endomtr 6950 | . 2 ⊢ ((2o ≈ {∅, {∅}} ∧ {∅, {∅}} ≼ 𝒫 1o) → 2o ≼ 𝒫 1o) | |
| 16 | 7, 14, 15 | mp2an 426 | 1 ⊢ 2o ≼ 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 class class class wbr 4083 1oc1o 6561 2oc2o 6562 ≈ cen 6893 ≼ cdom 6894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-dom 6897 |
| This theorem is referenced by: pwf1oexmid 16394 |
| Copyright terms: Public domain | W3C validator |