ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq GIF version

Theorem exmidpweq 7067
Description: Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq (EXMID ↔ 𝒫 1o = 2o)

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4281 . . . . . . . 8 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
21biimpi 120 . . . . . . 7 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3219.21bi 1604 . . . . . 6 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
4 df1o2 6573 . . . . . . . . 9 1o = {∅}
54pweqi 3653 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
65eleq2i 2296 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
7 velpw 3656 . . . . . . 7 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
86, 7bitri 184 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
9 vex 2802 . . . . . . 7 𝑥 ∈ V
109elpr 3687 . . . . . 6 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
113, 8, 103imtr4g 205 . . . . 5 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1211ssrdv 3230 . . . 4 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
13 pwpw0ss 3882 . . . . . 6 {∅, {∅}} ⊆ 𝒫 {∅}
1413, 5sseqtrri 3259 . . . . 5 {∅, {∅}} ⊆ 𝒫 1o
1514a1i 9 . . . 4 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1612, 15eqssd 3241 . . 3 (EXMID → 𝒫 1o = {∅, {∅}})
17 df2o2 6575 . . 3 2o = {∅, {∅}}
1816, 17eqtr4di 2280 . 2 (EXMID → 𝒫 1o = 2o)
19 simpr 110 . . . . . . . . 9 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ⊆ {∅})
2019, 7sylibr 134 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 {∅})
2120, 5eleqtrrdi 2323 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 1o)
22 simpl 109 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = 2o)
2322, 17eqtrdi 2278 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = {∅, {∅}})
2421, 23eleqtrd 2308 . . . . . 6 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ {∅, {∅}})
2524, 10sylib 122 . . . . 5 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625ex 115 . . . 4 (𝒫 1o = 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alrimiv 1920 . . 3 (𝒫 1o = 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2827, 1sylibr 134 . 2 (𝒫 1o = 2oEXMID)
2918, 28impbii 126 1 (EXMID ↔ 𝒫 1o = 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  wal 1393   = wceq 1395  wcel 2200  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  {cpr 3667  EXMIDwem 4277  1oc1o 6553  2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-exmid 4278  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  pw1fin  7068  pw1nel3  7412  3nsssucpw1  7417  onntri35  7418
  Copyright terms: Public domain W3C validator