ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq GIF version

Theorem exmidpweq 6970
Description: Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq (EXMID ↔ 𝒫 1o = 2o)

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4231 . . . . . . . 8 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
21biimpi 120 . . . . . . 7 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3219.21bi 1572 . . . . . 6 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
4 df1o2 6487 . . . . . . . . 9 1o = {∅}
54pweqi 3609 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
65eleq2i 2263 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
7 velpw 3612 . . . . . . 7 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
86, 7bitri 184 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
9 vex 2766 . . . . . . 7 𝑥 ∈ V
109elpr 3643 . . . . . 6 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
113, 8, 103imtr4g 205 . . . . 5 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1211ssrdv 3189 . . . 4 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
13 pwpw0ss 3834 . . . . . 6 {∅, {∅}} ⊆ 𝒫 {∅}
1413, 5sseqtrri 3218 . . . . 5 {∅, {∅}} ⊆ 𝒫 1o
1514a1i 9 . . . 4 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1612, 15eqssd 3200 . . 3 (EXMID → 𝒫 1o = {∅, {∅}})
17 df2o2 6489 . . 3 2o = {∅, {∅}}
1816, 17eqtr4di 2247 . 2 (EXMID → 𝒫 1o = 2o)
19 simpr 110 . . . . . . . . 9 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ⊆ {∅})
2019, 7sylibr 134 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 {∅})
2120, 5eleqtrrdi 2290 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 1o)
22 simpl 109 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = 2o)
2322, 17eqtrdi 2245 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = {∅, {∅}})
2421, 23eleqtrd 2275 . . . . . 6 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ {∅, {∅}})
2524, 10sylib 122 . . . . 5 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625ex 115 . . . 4 (𝒫 1o = 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alrimiv 1888 . . 3 (𝒫 1o = 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2827, 1sylibr 134 . 2 (𝒫 1o = 2oEXMID)
2918, 28impbii 126 1 (EXMID ↔ 𝒫 1o = 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  wss 3157  c0 3450  𝒫 cpw 3605  {csn 3622  {cpr 3623  EXMIDwem 4227  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-exmid 4228  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  pw1fin  6971  pw1nel3  7298  3nsssucpw1  7303  onntri35  7304
  Copyright terms: Public domain W3C validator