ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq GIF version

Theorem exmidpweq 7020
Description: Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq (EXMID ↔ 𝒫 1o = 2o)

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4249 . . . . . . . 8 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
21biimpi 120 . . . . . . 7 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3219.21bi 1582 . . . . . 6 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
4 df1o2 6527 . . . . . . . . 9 1o = {∅}
54pweqi 3624 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
65eleq2i 2273 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
7 velpw 3627 . . . . . . 7 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
86, 7bitri 184 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
9 vex 2776 . . . . . . 7 𝑥 ∈ V
109elpr 3658 . . . . . 6 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
113, 8, 103imtr4g 205 . . . . 5 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1211ssrdv 3203 . . . 4 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
13 pwpw0ss 3850 . . . . . 6 {∅, {∅}} ⊆ 𝒫 {∅}
1413, 5sseqtrri 3232 . . . . 5 {∅, {∅}} ⊆ 𝒫 1o
1514a1i 9 . . . 4 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1612, 15eqssd 3214 . . 3 (EXMID → 𝒫 1o = {∅, {∅}})
17 df2o2 6529 . . 3 2o = {∅, {∅}}
1816, 17eqtr4di 2257 . 2 (EXMID → 𝒫 1o = 2o)
19 simpr 110 . . . . . . . . 9 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ⊆ {∅})
2019, 7sylibr 134 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 {∅})
2120, 5eleqtrrdi 2300 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 1o)
22 simpl 109 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = 2o)
2322, 17eqtrdi 2255 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = {∅, {∅}})
2421, 23eleqtrd 2285 . . . . . 6 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ {∅, {∅}})
2524, 10sylib 122 . . . . 5 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625ex 115 . . . 4 (𝒫 1o = 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alrimiv 1898 . . 3 (𝒫 1o = 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2827, 1sylibr 134 . 2 (𝒫 1o = 2oEXMID)
2918, 28impbii 126 1 (EXMID ↔ 𝒫 1o = 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wcel 2177  wss 3170  c0 3464  𝒫 cpw 3620  {csn 3637  {cpr 3638  EXMIDwem 4245  1oc1o 6507  2oc2o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4177
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-exmid 4246  df-suc 4425  df-1o 6514  df-2o 6515
This theorem is referenced by:  pw1fin  7021  pw1nel3  7358  3nsssucpw1  7363  onntri35  7364
  Copyright terms: Public domain W3C validator