ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq GIF version

Theorem exmidpweq 6904
Description: Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq (EXMID ↔ 𝒫 1o = 2o)

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4196 . . . . . . . 8 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
21biimpi 120 . . . . . . 7 (EXMID → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
3219.21bi 1558 . . . . . 6 (EXMID → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
4 df1o2 6425 . . . . . . . . 9 1o = {∅}
54pweqi 3579 . . . . . . . 8 𝒫 1o = 𝒫 {∅}
65eleq2i 2244 . . . . . . 7 (𝑥 ∈ 𝒫 1o𝑥 ∈ 𝒫 {∅})
7 velpw 3582 . . . . . . 7 (𝑥 ∈ 𝒫 {∅} ↔ 𝑥 ⊆ {∅})
86, 7bitri 184 . . . . . 6 (𝑥 ∈ 𝒫 1o𝑥 ⊆ {∅})
9 vex 2740 . . . . . . 7 𝑥 ∈ V
109elpr 3613 . . . . . 6 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
113, 8, 103imtr4g 205 . . . . 5 (EXMID → (𝑥 ∈ 𝒫 1o𝑥 ∈ {∅, {∅}}))
1211ssrdv 3161 . . . 4 (EXMID → 𝒫 1o ⊆ {∅, {∅}})
13 pwpw0ss 3803 . . . . . 6 {∅, {∅}} ⊆ 𝒫 {∅}
1413, 5sseqtrri 3190 . . . . 5 {∅, {∅}} ⊆ 𝒫 1o
1514a1i 9 . . . 4 (EXMID → {∅, {∅}} ⊆ 𝒫 1o)
1612, 15eqssd 3172 . . 3 (EXMID → 𝒫 1o = {∅, {∅}})
17 df2o2 6427 . . 3 2o = {∅, {∅}}
1816, 17eqtr4di 2228 . 2 (EXMID → 𝒫 1o = 2o)
19 simpr 110 . . . . . . . . 9 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ⊆ {∅})
2019, 7sylibr 134 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 {∅})
2120, 5eleqtrrdi 2271 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ 𝒫 1o)
22 simpl 109 . . . . . . . 8 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = 2o)
2322, 17eqtrdi 2226 . . . . . . 7 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝒫 1o = {∅, {∅}})
2421, 23eleqtrd 2256 . . . . . 6 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → 𝑥 ∈ {∅, {∅}})
2524, 10sylib 122 . . . . 5 ((𝒫 1o = 2o𝑥 ⊆ {∅}) → (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625ex 115 . . . 4 (𝒫 1o = 2o → (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2726alrimiv 1874 . . 3 (𝒫 1o = 2o → ∀𝑥(𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})))
2827, 1sylibr 134 . 2 (𝒫 1o = 2oEXMID)
2918, 28impbii 126 1 (EXMID ↔ 𝒫 1o = 2o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wcel 2148  wss 3129  c0 3422  𝒫 cpw 3575  {csn 3592  {cpr 3593  EXMIDwem 4192  1oc1o 6405  2oc2o 6406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-nul 4127
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-exmid 4193  df-suc 4369  df-1o 6412  df-2o 6413
This theorem is referenced by:  pw1fin  6905  pw1nel3  7225  3nsssucpw1  7230  onntri35  7231
  Copyright terms: Public domain W3C validator