ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8185
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 8119 . . . . 5 ℂ ∈ V
2 2pwuninelg 6427 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8180 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8179 . . . . . . 7 +∞ = 𝒫
65pweqi 3653 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2250 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2295 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 675 . . 3 ¬ -∞ ∈ ℂ
10 recn 8128 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 666 . 2 ¬ -∞ ∈ ℝ
1211nelir 2498 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2200  wnel 2495  Vcvv 2799  𝒫 cpw 3649   cuni 3887  cc 7993  cr 7994  +∞cpnf 8174  -∞cmnf 8175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-pnf 8179  df-mnf 8180
This theorem is referenced by:  renemnf  8191  xrltnr  9971  nltmnf  9980
  Copyright terms: Public domain W3C validator