Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7898 | . . . . 5 ⊢ ℂ ∈ V | |
2 | 2pwuninelg 6262 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
4 | df-mnf 7957 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
5 | df-pnf 7956 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
6 | 5 | pweqi 3570 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
7 | 4, 6 | eqtri 2191 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
8 | 7 | eleq1i 2236 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
9 | 3, 8 | mtbir 666 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
10 | recn 7907 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
11 | 9, 10 | mto 657 | . 2 ⊢ ¬ -∞ ∈ ℝ |
12 | 11 | nelir 2438 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2141 ∉ wnel 2435 Vcvv 2730 𝒫 cpw 3566 ∪ cuni 3796 ℂcc 7772 ℝcr 7773 +∞cpnf 7951 -∞cmnf 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-nel 2436 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 |
This theorem is referenced by: renemnf 7968 xrltnr 9736 nltmnf 9745 |
Copyright terms: Public domain | W3C validator |