ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8114
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 8048 . . . . 5 ℂ ∈ V
2 2pwuninelg 6368 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8109 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8108 . . . . . . 7 +∞ = 𝒫
65pweqi 3619 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2225 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2270 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 672 . . 3 ¬ -∞ ∈ ℂ
10 recn 8057 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 663 . 2 ¬ -∞ ∈ ℝ
1211nelir 2473 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2175  wnel 2470  Vcvv 2771  𝒫 cpw 3615   cuni 3849  cc 7922  cr 7923  +∞cpnf 8103  -∞cmnf 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-nel 2471  df-ral 2488  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-pnf 8108  df-mnf 8109
This theorem is referenced by:  renemnf  8120  xrltnr  9900  nltmnf  9909
  Copyright terms: Public domain W3C validator