![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7998 | . . . . 5 ⊢ ℂ ∈ V | |
2 | 2pwuninelg 6338 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
4 | df-mnf 8059 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
5 | df-pnf 8058 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
6 | 5 | pweqi 3606 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
7 | 4, 6 | eqtri 2214 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
8 | 7 | eleq1i 2259 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
9 | 3, 8 | mtbir 672 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
10 | recn 8007 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
11 | 9, 10 | mto 663 | . 2 ⊢ ¬ -∞ ∈ ℝ |
12 | 11 | nelir 2462 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 ∉ wnel 2459 Vcvv 2760 𝒫 cpw 3602 ∪ cuni 3836 ℂcc 7872 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-nel 2460 df-ral 2477 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-pnf 8058 df-mnf 8059 |
This theorem is referenced by: renemnf 8070 xrltnr 9848 nltmnf 9857 |
Copyright terms: Public domain | W3C validator |