ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8069
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 8003 . . . . 5 ℂ ∈ V
2 2pwuninelg 6341 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8064 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8063 . . . . . . 7 +∞ = 𝒫
65pweqi 3609 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2217 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2262 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 672 . . 3 ¬ -∞ ∈ ℂ
10 recn 8012 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 663 . 2 ¬ -∞ ∈ ℝ
1211nelir 2465 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2167  wnel 2462  Vcvv 2763  𝒫 cpw 3605   cuni 3839  cc 7877  cr 7878  +∞cpnf 8058  -∞cmnf 8059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-mnf 8064
This theorem is referenced by:  renemnf  8075  xrltnr  9854  nltmnf  9863
  Copyright terms: Public domain W3C validator