| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8119 | . . . . 5 ⊢ ℂ ∈ V | |
| 2 | 2pwuninelg 6427 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
| 4 | df-mnf 8180 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
| 5 | df-pnf 8179 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | pweqi 3653 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 7 | 4, 6 | eqtri 2250 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 8 | 7 | eleq1i 2295 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
| 9 | 3, 8 | mtbir 675 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 10 | recn 8128 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 11 | 9, 10 | mto 666 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 12 | 11 | nelir 2498 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 ∉ wnel 2495 Vcvv 2799 𝒫 cpw 3649 ∪ cuni 3887 ℂcc 7993 ℝcr 7994 +∞cpnf 8174 -∞cmnf 8175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 |
| This theorem is referenced by: renemnf 8191 xrltnr 9971 nltmnf 9980 |
| Copyright terms: Public domain | W3C validator |