ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 7941
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7877 . . . . 5 ℂ ∈ V
2 2pwuninelg 6251 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 7936 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 7935 . . . . . . 7 +∞ = 𝒫
65pweqi 3563 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2186 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2232 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 661 . . 3 ¬ -∞ ∈ ℂ
10 recn 7886 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 652 . 2 ¬ -∞ ∈ ℝ
1211nelir 2434 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wnel 2431  Vcvv 2726  𝒫 cpw 3559   cuni 3789  cc 7751  cr 7752  +∞cpnf 7930  -∞cmnf 7931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-nel 2432  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936
This theorem is referenced by:  renemnf  7947  xrltnr  9715  nltmnf  9724
  Copyright terms: Public domain W3C validator