| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8079 | . . . . 5 ⊢ ℂ ∈ V | |
| 2 | 2pwuninelg 6387 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
| 4 | df-mnf 8140 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
| 5 | df-pnf 8139 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | pweqi 3625 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 7 | 4, 6 | eqtri 2227 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 8 | 7 | eleq1i 2272 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
| 9 | 3, 8 | mtbir 673 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 10 | recn 8088 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 11 | 9, 10 | mto 664 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 12 | 11 | nelir 2475 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 ∉ wnel 2472 Vcvv 2773 𝒫 cpw 3621 ∪ cuni 3859 ℂcc 7953 ℝcr 7954 +∞cpnf 8134 -∞cmnf 8135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-nel 2473 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-pnf 8139 df-mnf 8140 |
| This theorem is referenced by: renemnf 8151 xrltnr 9931 nltmnf 9940 |
| Copyright terms: Public domain | W3C validator |