ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 7680
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7616 . . . . 5 ℂ ∈ V
2 2pwuninelg 6110 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 7 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 7675 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 7674 . . . . . . 7 +∞ = 𝒫
65pweqi 3461 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2120 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2165 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 637 . . 3 ¬ -∞ ∈ ℂ
10 recn 7625 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 629 . 2 ¬ -∞ ∈ ℝ
1211nelir 2365 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1448  wnel 2362  Vcvv 2641  𝒫 cpw 3457   cuni 3683  cc 7498  cr 7499  +∞cpnf 7669  -∞cmnf 7670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-setind 4390  ax-cnex 7586  ax-resscn 7587
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-nel 2363  df-ral 2380  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-uni 3684  df-pnf 7674  df-mnf 7675
This theorem is referenced by:  renemnf  7686  xrltnr  9407  nltmnf  9415
  Copyright terms: Public domain W3C validator