Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7877 | . . . . 5 ⊢ ℂ ∈ V | |
2 | 2pwuninelg 6251 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
4 | df-mnf 7936 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
5 | df-pnf 7935 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
6 | 5 | pweqi 3563 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
7 | 4, 6 | eqtri 2186 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
8 | 7 | eleq1i 2232 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
9 | 3, 8 | mtbir 661 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
10 | recn 7886 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
11 | 9, 10 | mto 652 | . 2 ⊢ ¬ -∞ ∈ ℝ |
12 | 11 | nelir 2434 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2136 ∉ wnel 2431 Vcvv 2726 𝒫 cpw 3559 ∪ cuni 3789 ℂcc 7751 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-nel 2432 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-mnf 7936 |
This theorem is referenced by: renemnf 7947 xrltnr 9715 nltmnf 9724 |
Copyright terms: Public domain | W3C validator |