ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 7962
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7898 . . . . 5 ℂ ∈ V
2 2pwuninelg 6262 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 7957 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 7956 . . . . . . 7 +∞ = 𝒫
65pweqi 3570 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2191 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2236 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 666 . . 3 ¬ -∞ ∈ ℂ
10 recn 7907 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 657 . 2 ¬ -∞ ∈ ℝ
1211nelir 2438 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2141  wnel 2435  Vcvv 2730  𝒫 cpw 3566   cuni 3796  cc 7772  cr 7773  +∞cpnf 7951  -∞cmnf 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-nel 2436  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957
This theorem is referenced by:  renemnf  7968  xrltnr  9736  nltmnf  9745
  Copyright terms: Public domain W3C validator