ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 7974
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7910 . . . . 5 ℂ ∈ V
2 2pwuninelg 6274 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 7969 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 7968 . . . . . . 7 +∞ = 𝒫
65pweqi 3576 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2196 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2241 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 671 . . 3 ¬ -∞ ∈ ℂ
10 recn 7919 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 662 . 2 ¬ -∞ ∈ ℝ
1211nelir 2443 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2146  wnel 2440  Vcvv 2735  𝒫 cpw 3572   cuni 3805  cc 7784  cr 7785  +∞cpnf 7963  -∞cmnf 7964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-setind 4530  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-nel 2441  df-ral 2458  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-pnf 7968  df-mnf 7969
This theorem is referenced by:  renemnf  7980  xrltnr  9750  nltmnf  9759
  Copyright terms: Public domain W3C validator