ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8115
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 8049 . . . . 5 ℂ ∈ V
2 2pwuninelg 6369 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8110 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8109 . . . . . . 7 +∞ = 𝒫
65pweqi 3620 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2226 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2271 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 673 . . 3 ¬ -∞ ∈ ℂ
10 recn 8058 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 664 . 2 ¬ -∞ ∈ ℝ
1211nelir 2474 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2176  wnel 2471  Vcvv 2772  𝒫 cpw 3616   cuni 3850  cc 7923  cr 7924  +∞cpnf 8104  -∞cmnf 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472  df-ral 2489  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-pnf 8109  df-mnf 8110
This theorem is referenced by:  renemnf  8121  xrltnr  9901  nltmnf  9910
  Copyright terms: Public domain W3C validator