ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8002
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7937 . . . . 5 ℂ ∈ V
2 2pwuninelg 6286 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 7997 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 7996 . . . . . . 7 +∞ = 𝒫
65pweqi 3581 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2198 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2243 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 671 . . 3 ¬ -∞ ∈ ℂ
10 recn 7946 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 662 . 2 ¬ -∞ ∈ ℝ
1211nelir 2445 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2148  wnel 2442  Vcvv 2739  𝒫 cpw 3577   cuni 3811  cc 7811  cr 7812  +∞cpnf 7991  -∞cmnf 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-pnf 7996  df-mnf 7997
This theorem is referenced by:  renemnf  8008  xrltnr  9781  nltmnf  9790
  Copyright terms: Public domain W3C validator