ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8145
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 8079 . . . . 5 ℂ ∈ V
2 2pwuninelg 6387 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8140 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8139 . . . . . . 7 +∞ = 𝒫
65pweqi 3625 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2227 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2272 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 673 . . 3 ¬ -∞ ∈ ℂ
10 recn 8088 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 664 . 2 ¬ -∞ ∈ ℝ
1211nelir 2475 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  wnel 2472  Vcvv 2773  𝒫 cpw 3621   cuni 3859  cc 7953  cr 7954  +∞cpnf 8134  -∞cmnf 8135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4598  ax-cnex 8046  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-nel 2473  df-ral 2490  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-pnf 8139  df-mnf 8140
This theorem is referenced by:  renemnf  8151  xrltnr  9931  nltmnf  9940
  Copyright terms: Public domain W3C validator