ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnre GIF version

Theorem mnfnre 8064
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
mnfnre -∞ ∉ ℝ

Proof of Theorem mnfnre
StepHypRef Expression
1 cnex 7998 . . . . 5 ℂ ∈ V
2 2pwuninelg 6338 . . . . 5 (ℂ ∈ V → ¬ 𝒫 𝒫 ℂ ∈ ℂ)
31, 2ax-mp 5 . . . 4 ¬ 𝒫 𝒫 ℂ ∈ ℂ
4 df-mnf 8059 . . . . . 6 -∞ = 𝒫 +∞
5 df-pnf 8058 . . . . . . 7 +∞ = 𝒫
65pweqi 3606 . . . . . 6 𝒫 +∞ = 𝒫 𝒫
74, 6eqtri 2214 . . . . 5 -∞ = 𝒫 𝒫
87eleq1i 2259 . . . 4 (-∞ ∈ ℂ ↔ 𝒫 𝒫 ℂ ∈ ℂ)
93, 8mtbir 672 . . 3 ¬ -∞ ∈ ℂ
10 recn 8007 . . 3 (-∞ ∈ ℝ → -∞ ∈ ℂ)
119, 10mto 663 . 2 ¬ -∞ ∈ ℝ
1211nelir 2462 1 -∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2164  wnel 2459  Vcvv 2760  𝒫 cpw 3602   cuni 3836  cc 7872  cr 7873  +∞cpnf 8053  -∞cmnf 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059
This theorem is referenced by:  renemnf  8070  xrltnr  9848  nltmnf  9857
  Copyright terms: Public domain W3C validator