| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8020 | . . . . 5 ⊢ ℂ ∈ V | |
| 2 | 2pwuninelg 6350 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
| 4 | df-mnf 8081 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
| 5 | df-pnf 8080 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | pweqi 3610 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 7 | 4, 6 | eqtri 2217 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 8 | 7 | eleq1i 2262 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
| 9 | 3, 8 | mtbir 672 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 10 | recn 8029 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 11 | 9, 10 | mto 663 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 12 | 11 | nelir 2465 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2167 ∉ wnel 2462 Vcvv 2763 𝒫 cpw 3606 ∪ cuni 3840 ℂcc 7894 ℝcr 7895 +∞cpnf 8075 -∞cmnf 8076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-mnf 8081 |
| This theorem is referenced by: renemnf 8092 xrltnr 9871 nltmnf 9880 |
| Copyright terms: Public domain | W3C validator |