Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version |
Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
mnfnre | ⊢ -∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7910 | . . . . 5 ⊢ ℂ ∈ V | |
2 | 2pwuninelg 6274 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
4 | df-mnf 7969 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
5 | df-pnf 7968 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
6 | 5 | pweqi 3576 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
7 | 4, 6 | eqtri 2196 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
8 | 7 | eleq1i 2241 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
9 | 3, 8 | mtbir 671 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
10 | recn 7919 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
11 | 9, 10 | mto 662 | . 2 ⊢ ¬ -∞ ∈ ℝ |
12 | 11 | nelir 2443 | 1 ⊢ -∞ ∉ ℝ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2146 ∉ wnel 2440 Vcvv 2735 𝒫 cpw 3572 ∪ cuni 3805 ℂcc 7784 ℝcr 7785 +∞cpnf 7963 -∞cmnf 7964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-nel 2441 df-ral 2458 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-mnf 7969 |
This theorem is referenced by: renemnf 7980 xrltnr 9750 nltmnf 9759 |
Copyright terms: Public domain | W3C validator |