| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8049 | . . . . 5 ⊢ ℂ ∈ V | |
| 2 | 2pwuninelg 6369 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ |
| 4 | df-mnf 8110 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
| 5 | df-pnf 8109 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | pweqi 3620 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ |
| 7 | 4, 6 | eqtri 2226 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ |
| 8 | 7 | eleq1i 2271 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) |
| 9 | 3, 8 | mtbir 673 | . . 3 ⊢ ¬ -∞ ∈ ℂ |
| 10 | recn 8058 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 11 | 9, 10 | mto 664 | . 2 ⊢ ¬ -∞ ∈ ℝ |
| 12 | 11 | nelir 2474 | 1 ⊢ -∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2176 ∉ wnel 2471 Vcvv 2772 𝒫 cpw 3616 ∪ cuni 3850 ℂcc 7923 ℝcr 7924 +∞cpnf 8104 -∞cmnf 8105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-nel 2472 df-ral 2489 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-mnf 8110 |
| This theorem is referenced by: renemnf 8121 xrltnr 9901 nltmnf 9910 |
| Copyright terms: Public domain | W3C validator |