| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mnfnre | GIF version | ||
| Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| mnfnre | ⊢ -∞ ∉ ℝ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnex 8003 | . . . . 5 ⊢ ℂ ∈ V | |
| 2 | 2pwuninelg 6341 | . . . . 5 ⊢ (ℂ ∈ V → ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 𝒫 ∪ ℂ ∈ ℂ | 
| 4 | df-mnf 8064 | . . . . . 6 ⊢ -∞ = 𝒫 +∞ | |
| 5 | df-pnf 8063 | . . . . . . 7 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | pweqi 3609 | . . . . . 6 ⊢ 𝒫 +∞ = 𝒫 𝒫 ∪ ℂ | 
| 7 | 4, 6 | eqtri 2217 | . . . . 5 ⊢ -∞ = 𝒫 𝒫 ∪ ℂ | 
| 8 | 7 | eleq1i 2262 | . . . 4 ⊢ (-∞ ∈ ℂ ↔ 𝒫 𝒫 ∪ ℂ ∈ ℂ) | 
| 9 | 3, 8 | mtbir 672 | . . 3 ⊢ ¬ -∞ ∈ ℂ | 
| 10 | recn 8012 | . . 3 ⊢ (-∞ ∈ ℝ → -∞ ∈ ℂ) | |
| 11 | 9, 10 | mto 663 | . 2 ⊢ ¬ -∞ ∈ ℝ | 
| 12 | 11 | nelir 2465 | 1 ⊢ -∞ ∉ ℝ | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∈ wcel 2167 ∉ wnel 2462 Vcvv 2763 𝒫 cpw 3605 ∪ cuni 3839 ℂcc 7877 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 | 
| This theorem is referenced by: renemnf 8075 xrltnr 9854 nltmnf 9863 | 
| Copyright terms: Public domain | W3C validator |