| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweqd | GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 3652 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pmvalg 6806 issubm 13505 issubg 13710 subgex 13713 issubrng 14163 issubrg 14185 lsssetm 14320 lspfval 14352 lsppropd 14396 sraval 14401 basis1 14721 baspartn 14724 cldval 14773 ntrfval 14774 clsfval 14775 neifval 14814 mopnfss 15121 isuhgrm 15871 isushgrm 15872 isuhgropm 15881 uhgrun 15886 isupgren 15895 upgrop 15904 isumgren 15905 upgrun 15924 umgrun 15926 isuspgren 15955 isusgren 15956 isuspgropen 15962 isusgropen 15963 ausgrusgrben 15966 usgrstrrepeen 16029 |
| Copyright terms: Public domain | W3C validator |