| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweqd | GIF version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pweq 3618 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 𝒫 cpw 3615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: pmvalg 6745 issubm 13275 issubg 13480 subgex 13483 issubrng 13932 issubrg 13954 lsssetm 14089 lspfval 14121 lsppropd 14165 sraval 14170 basis1 14490 baspartn 14493 cldval 14542 ntrfval 14543 clsfval 14544 neifval 14583 mopnfss 14890 |
| Copyright terms: Public domain | W3C validator |