ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqd GIF version

Theorem pweqd 3611
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.)
Hypothesis
Ref Expression
pweqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
pweqd (𝜑 → 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweqd
StepHypRef Expression
1 pweqd.1 . 2 (𝜑𝐴 = 𝐵)
2 pweq 3609 . 2 (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵)
31, 2syl 14 1 (𝜑 → 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  𝒫 cpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  pmvalg  6727  issubm  13176  issubg  13381  subgex  13384  issubrng  13833  issubrg  13855  lsssetm  13990  lspfval  14022  lsppropd  14066  sraval  14071  basis1  14391  baspartn  14394  cldval  14443  ntrfval  14444  clsfval  14445  neifval  14484  mopnfss  14791
  Copyright terms: Public domain W3C validator