![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bastg | GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | β’ (π΅ β π β π΅ β (topGenβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . . 6 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β π΅) | |
2 | vex 2741 | . . . . . . . 8 β’ π₯ β V | |
3 | 2 | pwid 3591 | . . . . . . 7 β’ π₯ β π« π₯ |
4 | 3 | a1i 9 | . . . . . 6 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β π« π₯) |
5 | 1, 4 | elind 3321 | . . . . 5 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β (π΅ β© π« π₯)) |
6 | elssuni 3838 | . . . . 5 β’ (π₯ β (π΅ β© π« π₯) β π₯ β βͺ (π΅ β© π« π₯)) | |
7 | 5, 6 | syl 14 | . . . 4 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β βͺ (π΅ β© π« π₯)) |
8 | 7 | ex 115 | . . 3 β’ (π΅ β π β (π₯ β π΅ β π₯ β βͺ (π΅ β© π« π₯))) |
9 | eltg 13555 | . . 3 β’ (π΅ β π β (π₯ β (topGenβπ΅) β π₯ β βͺ (π΅ β© π« π₯))) | |
10 | 8, 9 | sylibrd 169 | . 2 β’ (π΅ β π β (π₯ β π΅ β π₯ β (topGenβπ΅))) |
11 | 10 | ssrdv 3162 | 1 β’ (π΅ β π β π΅ β (topGenβπ΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wcel 2148 β© cin 3129 β wss 3130 π« cpw 3576 βͺ cuni 3810 βcfv 5217 topGenctg 12703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-topgen 12709 |
This theorem is referenced by: unitg 13565 tgclb 13568 tgtop 13571 tgidm 13577 tgss3 13581 bastop2 13587 tgcn 13711 tgcnp 13712 txopn 13768 txbasval 13770 blssopn 13988 xmettxlem 14012 iooretopg 14031 |
Copyright terms: Public domain | W3C validator |