![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bastg | GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | vex 2755 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | 2 | pwid 3605 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
4 | 3 | a1i 9 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
5 | 1, 4 | elind 3335 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
6 | elssuni 3852 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
8 | 7 | ex 115 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
9 | eltg 14029 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
10 | 8, 9 | sylibrd 169 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
11 | 10 | ssrdv 3176 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 ∩ cin 3143 ⊆ wss 3144 𝒫 cpw 3590 ∪ cuni 3824 ‘cfv 5235 topGenctg 12762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-topgen 12768 |
This theorem is referenced by: unitg 14039 tgclb 14042 tgtop 14045 tgidm 14051 tgss3 14055 bastop2 14061 tgcn 14185 tgcnp 14186 txopn 14242 txbasval 14244 blssopn 14462 xmettxlem 14486 iooretopg 14505 |
Copyright terms: Public domain | W3C validator |