Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bastg | GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | vex 2738 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | 2 | pwid 3587 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
4 | 3 | a1i 9 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
5 | 1, 4 | elind 3318 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
6 | elssuni 3833 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
8 | 7 | ex 115 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
9 | eltg 13103 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
10 | 8, 9 | sylibrd 169 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
11 | 10 | ssrdv 3159 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ∩ cin 3126 ⊆ wss 3127 𝒫 cpw 3572 ∪ cuni 3805 ‘cfv 5208 topGenctg 12623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-topgen 12629 |
This theorem is referenced by: unitg 13113 tgclb 13116 tgtop 13119 tgidm 13125 tgss3 13129 bastop2 13135 tgcn 13259 tgcnp 13260 txopn 13316 txbasval 13318 blssopn 13536 xmettxlem 13560 iooretopg 13579 |
Copyright terms: Public domain | W3C validator |