Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1dceq GIF version

Theorem pw1dceq 16399
Description: The powerset of 1o having decidable equality is equivalent to excluded middle. (Contributed by Jim Kingdon, 12-Feb-2026.)
Assertion
Ref Expression
pw1dceq (EXMID ↔ ∀𝑥 ∈ 𝒫 1o𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem pw1dceq
StepHypRef Expression
1 exmidexmid 4280 . . . 4 (EXMIDDECID 𝑥 = 𝑦)
21ralrimivw 2604 . . 3 (EXMID → ∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦)
32ralrimivw 2604 . 2 (EXMID → ∀𝑥 ∈ 𝒫 1o𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦)
4 1oex 6576 . . . . . 6 1o ∈ V
54pwid 3664 . . . . 5 1o ∈ 𝒫 1o
6 eqeq2 2239 . . . . . . 7 (𝑦 = 1o → (𝑥 = 𝑦𝑥 = 1o))
76dcbid 843 . . . . . 6 (𝑦 = 1o → (DECID 𝑥 = 𝑦DECID 𝑥 = 1o))
87rspcv 2903 . . . . 5 (1o ∈ 𝒫 1o → (∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦DECID 𝑥 = 1o))
95, 8ax-mp 5 . . . 4 (∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦DECID 𝑥 = 1o)
109ralimi 2593 . . 3 (∀𝑥 ∈ 𝒫 1o𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦 → ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
11 pw1dc1 7084 . . 3 (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
1210, 11sylibr 134 . 2 (∀𝑥 ∈ 𝒫 1o𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦EXMID)
133, 12impbii 126 1 (EXMID ↔ ∀𝑥 ∈ 𝒫 1o𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  𝒫 cpw 3649  EXMIDwem 4278  1oc1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator