| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1dceq | GIF version | ||
| Description: The powerset of 1o having decidable equality is equivalent to excluded middle. (Contributed by Jim Kingdon, 12-Feb-2026.) |
| Ref | Expression |
|---|---|
| pw1dceq | ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1o∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4280 | . . . 4 ⊢ (EXMID → DECID 𝑥 = 𝑦) | |
| 2 | 1 | ralrimivw 2604 | . . 3 ⊢ (EXMID → ∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦) |
| 3 | 2 | ralrimivw 2604 | . 2 ⊢ (EXMID → ∀𝑥 ∈ 𝒫 1o∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦) |
| 4 | 1oex 6576 | . . . . . 6 ⊢ 1o ∈ V | |
| 5 | 4 | pwid 3664 | . . . . 5 ⊢ 1o ∈ 𝒫 1o |
| 6 | eqeq2 2239 | . . . . . . 7 ⊢ (𝑦 = 1o → (𝑥 = 𝑦 ↔ 𝑥 = 1o)) | |
| 7 | 6 | dcbid 843 | . . . . . 6 ⊢ (𝑦 = 1o → (DECID 𝑥 = 𝑦 ↔ DECID 𝑥 = 1o)) |
| 8 | 7 | rspcv 2903 | . . . . 5 ⊢ (1o ∈ 𝒫 1o → (∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦 → DECID 𝑥 = 1o)) |
| 9 | 5, 8 | ax-mp 5 | . . . 4 ⊢ (∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦 → DECID 𝑥 = 1o) |
| 10 | 9 | ralimi 2593 | . . 3 ⊢ (∀𝑥 ∈ 𝒫 1o∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦 → ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) |
| 11 | pw1dc1 7084 | . . 3 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o) | |
| 12 | 10, 11 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ 𝒫 1o∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦 → EXMID) |
| 13 | 3, 12 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥 ∈ 𝒫 1o∀𝑦 ∈ 𝒫 1oDECID 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 𝒫 cpw 3649 EXMIDwem 4278 1oc1o 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-exmid 4279 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |