| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwnex | GIF version | ||
| Description: The class of all power sets is a proper class. See also snnex 4539. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 4538 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 2 | df-nel 2496 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
| 4 | vpwex 4263 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex 2802 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid 3664 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4, 6 | pm3.2i 272 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
| 8 | 3, 7 | mpg 1497 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∉ wnel 2495 Vcvv 2799 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3889 df-iun 3967 |
| This theorem is referenced by: topnex 14768 |
| Copyright terms: Public domain | W3C validator |