| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwnex | GIF version | ||
| Description: The class of all power sets is a proper class. See also snnex 4483. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 4482 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 2 | df-nel 2463 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
| 4 | vpwex 4212 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid 3620 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4, 6 | pm3.2i 272 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
| 8 | 3, 7 | mpg 1465 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∉ wnel 2462 Vcvv 2763 𝒫 cpw 3605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-uni 3840 df-iun 3918 |
| This theorem is referenced by: topnex 14322 |
| Copyright terms: Public domain | W3C validator |