| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwnex | GIF version | ||
| Description: The class of all power sets is a proper class. See also snnex 4516. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 4515 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 2 | df-nel 2476 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
| 4 | vpwex 4242 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex 2782 | . . . 4 ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid 3644 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4, 6 | pm3.2i 272 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
| 8 | 3, 7 | mpg 1477 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∀wal 1373 = wceq 1375 ∃wex 1518 ∈ wcel 2180 {cab 2195 ∉ wnel 2475 Vcvv 2779 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-nel 2476 df-ral 2493 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-uni 3868 df-iun 3946 |
| This theorem is referenced by: topnex 14725 |
| Copyright terms: Public domain | W3C validator |