Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omind GIF version

Theorem bj-omind 14771
Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-omind Ind ω

Proof of Theorem bj-omind
StepHypRef Expression
1 bj-indint 14768 . 2 Ind {𝑥 ∈ V ∣ Ind 𝑥}
2 bj-dfom 14770 . . . 4 ω = {𝑥 ∣ Ind 𝑥}
3 rabab 2760 . . . . 5 {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥}
43inteqi 3850 . . . 4 {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥}
52, 4eqtr4i 2201 . . 3 ω = {𝑥 ∈ V ∣ Ind 𝑥}
6 bj-indeq 14766 . . 3 (ω = {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind {𝑥 ∈ V ∣ Ind 𝑥}))
75, 6ax-mp 5 . 2 (Ind ω ↔ Ind {𝑥 ∈ V ∣ Ind 𝑥})
81, 7mpbir 146 1 Ind ω
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  {cab 2163  {crab 2459  Vcvv 2739   cint 3846  ωcom 4591  Ind wind 14763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14650  ax-bdor 14653  ax-bdex 14656  ax-bdeq 14657  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14678  df-bj-ind 14764
This theorem is referenced by:  bj-om  14774  bj-peano2  14776  peano5set  14777
  Copyright terms: Public domain W3C validator