| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version | ||
| Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-omind | ⊢ Ind ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-indint 16066 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
| 2 | bj-dfom 16068 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
| 3 | rabab 2798 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
| 4 | 3 | inteqi 3903 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
| 5 | 2, 4 | eqtr4i 2231 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
| 6 | bj-indeq 16064 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
| 8 | 1, 7 | mpbir 146 | 1 ⊢ Ind ω |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 {cab 2193 {crab 2490 Vcvv 2776 ∩ cint 3899 ωcom 4656 Ind wind 16061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-om 16072 bj-peano2 16074 peano5set 16075 |
| Copyright terms: Public domain | W3C validator |