| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version | ||
| Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-omind | ⊢ Ind ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-indint 15867 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
| 2 | bj-dfom 15869 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
| 3 | rabab 2793 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
| 4 | 3 | inteqi 3889 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
| 5 | 2, 4 | eqtr4i 2229 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
| 6 | bj-indeq 15865 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
| 8 | 1, 7 | mpbir 146 | 1 ⊢ Ind ω |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 {cab 2191 {crab 2488 Vcvv 2772 ∩ cint 3885 ωcom 4638 Ind wind 15862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15749 ax-bdor 15752 ax-bdex 15755 ax-bdeq 15756 ax-bdel 15757 ax-bdsb 15758 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-bdc 15777 df-bj-ind 15863 |
| This theorem is referenced by: bj-om 15873 bj-peano2 15875 peano5set 15876 |
| Copyright terms: Public domain | W3C validator |