![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version |
Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-omind | ⊢ Ind ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-indint 15423 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
2 | bj-dfom 15425 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
3 | rabab 2781 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
4 | 3 | inteqi 3874 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
5 | 2, 4 | eqtr4i 2217 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
6 | bj-indeq 15421 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
8 | 1, 7 | mpbir 146 | 1 ⊢ Ind ω |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 {cab 2179 {crab 2476 Vcvv 2760 ∩ cint 3870 ωcom 4622 Ind wind 15418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4464 ax-bd0 15305 ax-bdor 15308 ax-bdex 15311 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-bdc 15333 df-bj-ind 15419 |
This theorem is referenced by: bj-om 15429 bj-peano2 15431 peano5set 15432 |
Copyright terms: Public domain | W3C validator |