![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version |
Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-omind | ⊢ Ind ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-indint 14768 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
2 | bj-dfom 14770 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
3 | rabab 2760 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
4 | 3 | inteqi 3850 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
5 | 2, 4 | eqtr4i 2201 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
6 | bj-indeq 14766 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
8 | 1, 7 | mpbir 146 | 1 ⊢ Ind ω |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 {cab 2163 {crab 2459 Vcvv 2739 ∩ cint 3846 ωcom 4591 Ind wind 14763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14650 ax-bdor 14653 ax-bdex 14656 ax-bdeq 14657 ax-bdel 14658 ax-bdsb 14659 ax-bdsep 14721 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14678 df-bj-ind 14764 |
This theorem is referenced by: bj-om 14774 bj-peano2 14776 peano5set 14777 |
Copyright terms: Public domain | W3C validator |