Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omind GIF version

Theorem bj-omind 12966
Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-omind Ind ω

Proof of Theorem bj-omind
StepHypRef Expression
1 bj-indint 12963 . 2 Ind {𝑥 ∈ V ∣ Ind 𝑥}
2 bj-dfom 12965 . . . 4 ω = {𝑥 ∣ Ind 𝑥}
3 rabab 2679 . . . . 5 {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥}
43inteqi 3743 . . . 4 {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥}
52, 4eqtr4i 2139 . . 3 ω = {𝑥 ∈ V ∣ Ind 𝑥}
6 bj-indeq 12961 . . 3 (ω = {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind {𝑥 ∈ V ∣ Ind 𝑥}))
75, 6ax-mp 5 . 2 (Ind ω ↔ Ind {𝑥 ∈ V ∣ Ind 𝑥})
81, 7mpbir 145 1 Ind ω
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1314  {cab 2101  {crab 2395  Vcvv 2658   cint 3739  ωcom 4472  Ind wind 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-nul 4022  ax-pr 4099  ax-un 4323  ax-bd0 12845  ax-bdor 12848  ax-bdex 12851  ax-bdeq 12852  ax-bdel 12853  ax-bdsb 12854  ax-bdsep 12916
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-nul 3332  df-sn 3501  df-pr 3502  df-uni 3705  df-int 3740  df-suc 4261  df-iom 4473  df-bdc 12873  df-bj-ind 12959
This theorem is referenced by:  bj-om  12969  bj-peano2  12971  peano5set  12972
  Copyright terms: Public domain W3C validator