Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version |
Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-omind | ⊢ Ind ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-indint 13813 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
2 | bj-dfom 13815 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
3 | rabab 2747 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
4 | 3 | inteqi 3828 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
5 | 2, 4 | eqtr4i 2189 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
6 | bj-indeq 13811 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
8 | 1, 7 | mpbir 145 | 1 ⊢ Ind ω |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 {cab 2151 {crab 2448 Vcvv 2726 ∩ cint 3824 ωcom 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-om 13819 bj-peano2 13821 peano5set 13822 |
Copyright terms: Public domain | W3C validator |