| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omind | GIF version | ||
| Description: ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-omind | ⊢ Ind ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-indint 16294 | . 2 ⊢ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥} | |
| 2 | bj-dfom 16296 | . . . 4 ⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | |
| 3 | rabab 2821 | . . . . 5 ⊢ {𝑥 ∈ V ∣ Ind 𝑥} = {𝑥 ∣ Ind 𝑥} | |
| 4 | 3 | inteqi 3927 | . . . 4 ⊢ ∩ {𝑥 ∈ V ∣ Ind 𝑥} = ∩ {𝑥 ∣ Ind 𝑥} |
| 5 | 2, 4 | eqtr4i 2253 | . . 3 ⊢ ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} |
| 6 | bj-indeq 16292 | . . 3 ⊢ (ω = ∩ {𝑥 ∈ V ∣ Ind 𝑥} → (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥})) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (Ind ω ↔ Ind ∩ {𝑥 ∈ V ∣ Ind 𝑥}) |
| 8 | 1, 7 | mpbir 146 | 1 ⊢ Ind ω |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 {cab 2215 {crab 2512 Vcvv 2799 ∩ cint 3923 ωcom 4682 Ind wind 16289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-om 16300 bj-peano2 16302 peano5set 16303 |
| Copyright terms: Public domain | W3C validator |