ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexd GIF version

Theorem rabexd 4178
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4179. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1 𝐵 = {𝑥𝐴𝜓}
rabexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
rabexd (𝜑𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2 𝐵 = {𝑥𝐴𝜓}
2 rabexd.2 . . 3 (𝜑𝐴𝑉)
3 rabexg 4176 . . 3 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
42, 3syl 14 . 2 (𝜑 → {𝑥𝐴𝜓} ∈ V)
51, 4eqeltrid 2283 1 (𝜑𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  rabex2  4179  psrbasg  14227  psrelbas  14228
  Copyright terms: Public domain W3C validator