ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2ex GIF version

Theorem r2ex 2550
Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
r2ex (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r2ex
StepHypRef Expression
1 nfcv 2372 . 2 𝑦𝐴
21r2exf 2548 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  reean  2700  rexiunxp  4864  rnoprab2  6094  genprndl  7716  genprndu  7717  genpdisj  7718  prmuloc  7761  mullocpr  7766  axcnre  8076  upgrex  15911  umgredg  15951
  Copyright terms: Public domain W3C validator