| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r2ex | GIF version | ||
| Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| r2ex | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2352 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | r2exf 2528 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1518 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 |
| This theorem is referenced by: reean 2680 rexiunxp 4841 rnoprab2 6059 genprndl 7676 genprndu 7677 genpdisj 7678 prmuloc 7721 mullocpr 7726 axcnre 8036 upgrex 15868 umgredg 15908 |
| Copyright terms: Public domain | W3C validator |