Step | Hyp | Ref
| Expression |
1 | | funres 5259 |
. . . . 5
⊢ (Fun
(𝐺 ∖ {∅})
→ Fun ((𝐺 ∖
{∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩}))) |
2 | 1 | ad2antlr 489 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩}))) |
3 | | funsng 5264 |
. . . . 5
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → Fun {⟨𝐼, 𝐸⟩}) |
4 | 3 | adantl 277 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun {⟨𝐼, 𝐸⟩}) |
5 | | dmres 4930 |
. . . . . . 7
⊢ dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) |
6 | 5 | ineq1i 3334 |
. . . . . 6
⊢ (dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) |
7 | | in32 3349 |
. . . . . . 7
⊢ (((V
∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom
{⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) |
8 | | incom 3329 |
. . . . . . . . 9
⊢ ((V
∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) |
9 | | disjdif 3497 |
. . . . . . . . 9
⊢ (dom
{⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅ |
10 | 8, 9 | eqtri 2198 |
. . . . . . . 8
⊢ ((V
∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅ |
11 | 10 | ineq1i 3334 |
. . . . . . 7
⊢ (((V
∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom
(𝐺 ∖
{∅})) |
12 | | 0in 3460 |
. . . . . . 7
⊢ (∅
∩ dom (𝐺 ∖
{∅})) = ∅ |
13 | 7, 11, 12 | 3eqtri 2202 |
. . . . . 6
⊢ (((V
∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom
{⟨𝐼, 𝐸⟩}) = ∅ |
14 | 6, 13 | eqtri 2198 |
. . . . 5
⊢ (dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅ |
15 | 14 | a1i 9 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) |
16 | | funun 5262 |
. . . 4
⊢ (((Fun
((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V
∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
17 | 2, 4, 15, 16 | syl21anc 1237 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
18 | | difundir 3390 |
. . . . 5
⊢ (((𝐺 ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪
({⟨𝐼, 𝐸⟩} ∖
{∅})) |
19 | | resdifcom 4927 |
. . . . . . 7
⊢ ((𝐺 ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V
∖ dom {⟨𝐼, 𝐸⟩})) |
20 | 19 | a1i 9 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V
∖ dom {⟨𝐼, 𝐸⟩}))) |
21 | | elex 2750 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ V) |
22 | | elex 2750 |
. . . . . . . . 9
⊢ (𝐸 ∈ 𝑊 → 𝐸 ∈ V) |
23 | | opm 4236 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ ↔ (𝐼 ∈ V ∧ 𝐸 ∈ V)) |
24 | | n0r 3438 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ → ⟨𝐼, 𝐸⟩ ≠ ∅) |
25 | 23, 24 | sylbir 135 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ 𝐸 ∈ V) → ⟨𝐼, 𝐸⟩ ≠ ∅) |
26 | 21, 22, 25 | syl2an 289 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ⟨𝐼, 𝐸⟩ ≠ ∅) |
27 | 26 | adantl 277 |
. . . . . . 7
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ⟨𝐼, 𝐸⟩ ≠ ∅) |
28 | | disjsn2 3657 |
. . . . . . 7
⊢
(⟨𝐼, 𝐸⟩ ≠ ∅ →
({⟨𝐼, 𝐸⟩} ∩ {∅}) =
∅) |
29 | | disjdif2 3503 |
. . . . . . 7
⊢
(({⟨𝐼, 𝐸⟩} ∩ {∅}) =
∅ → ({⟨𝐼,
𝐸⟩} ∖ {∅})
= {⟨𝐼, 𝐸⟩}) |
30 | 27, 28, 29 | 3syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩}) |
31 | 20, 30 | uneq12d 3292 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪
({⟨𝐼, 𝐸⟩} ∖ {∅})) =
(((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
32 | 18, 31 | eqtrid 2222 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V
∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
33 | 32 | funeqd 5240 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) ↔ Fun
(((𝐺 ∖ {∅})
↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))) |
34 | 17, 33 | mpbird 167 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖
{∅})) |
35 | | simpll 527 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → 𝐺 ∈ 𝑉) |
36 | | opexg 4230 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ⟨𝐼, 𝐸⟩ ∈ V) |
37 | 36 | adantl 277 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V) |
38 | | setsvalg 12494 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
39 | 35, 37, 38 | syl2anc 411 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})) |
40 | 39 | difeq1d 3254 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖
{∅})) |
41 | 40 | funeqd 5240 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun
(((𝐺 ↾ (V ∖ dom
{⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖
{∅}))) |
42 | 34, 41 | mpbird 167 |
1
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) |