ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 GIF version

Theorem setsfun0 12034
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12033 is useful for proofs based on isstruct2r 12009 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsfun0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 5172 . . . . 5 (Fun (𝐺 ∖ {∅}) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 481 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5177 . . . . 5 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 275 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 4848 . . . . . . 7 dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
65ineq1i 3278 . . . . . 6 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3293 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
8 incom 3273 . . . . . . . . 9 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3440 . . . . . . . . 9 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2161 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3278 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom (𝐺 ∖ {∅}))
12 0in 3403 . . . . . . 7 (∅ ∩ dom (𝐺 ∖ {∅})) = ∅
137, 11, 123eqtri 2165 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2161 . . . . 5 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5175 . . . 4 (((Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1216 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 difundir 3334 . . . . 5 (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅}))
19 resdifcom 4845 . . . . . . 7 ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩}))
2019a1i 9 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21 elex 2700 . . . . . . . . 9 (𝐼𝑈𝐼 ∈ V)
22 elex 2700 . . . . . . . . 9 (𝐸𝑊𝐸 ∈ V)
23 opm 4164 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ ↔ (𝐼 ∈ V ∧ 𝐸 ∈ V))
24 n0r 3381 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ → ⟨𝐼, 𝐸⟩ ≠ ∅)
2523, 24sylbir 134 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝐸 ∈ V) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2621, 22, 25syl2an 287 . . . . . . . 8 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2726adantl 275 . . . . . . 7 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ≠ ∅)
28 disjsn2 3594 . . . . . . 7 (⟨𝐼, 𝐸⟩ ≠ ∅ → ({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅)
29 disjdif2 3446 . . . . . . 7 (({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅ → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3027, 28, 293syl 17 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3120, 30uneq12d 3236 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅})) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3218, 31syl5eq 2185 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3332funeqd 5153 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) ↔ Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
3417, 33mpbird 166 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
35 simpll 519 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
36 opexg 4158 . . . . . 6 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
3736adantl 275 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
38 setsvalg 12028 . . . . 5 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3935, 37, 38syl2anc 409 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
4039difeq1d 3198 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
4140funeqd 5153 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
4234, 41mpbird 166 1 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  wne 2309  Vcvv 2689  cdif 3073  cun 3074  cin 3075  c0 3368  {csn 3532  cop 3535  dom cdm 4547  cres 4549  Fun wfun 5125  (class class class)co 5782   sSet csts 11996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sets 12005
This theorem is referenced by:  setsn0fun  12035
  Copyright terms: Public domain W3C validator