ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 GIF version

Theorem setsfun0 12512
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12511 is useful for proofs based on isstruct2r 12487 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsfun0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funres 5269 . . . . 5 (Fun (𝐺 ∖ {∅}) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21ad2antlr 489 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
3 funsng 5274 . . . . 5 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
43adantl 277 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
5 dmres 4940 . . . . . . 7 dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
65ineq1i 3344 . . . . . 6 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩})
7 in32 3359 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
8 incom 3339 . . . . . . . . 9 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
9 disjdif 3507 . . . . . . . . 9 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
108, 9eqtri 2208 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1110ineq1i 3344 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom (𝐺 ∖ {∅}))
12 0in 3470 . . . . . . 7 (∅ ∩ dom (𝐺 ∖ {∅})) = ∅
137, 11, 123eqtri 2212 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
146, 13eqtri 2208 . . . . 5 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1514a1i 9 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
16 funun 5272 . . . 4 (((Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
172, 4, 15, 16syl21anc 1247 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
18 difundir 3400 . . . . 5 (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅}))
19 resdifcom 4937 . . . . . . 7 ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩}))
2019a1i 9 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21 elex 2760 . . . . . . . . 9 (𝐼𝑈𝐼 ∈ V)
22 elex 2760 . . . . . . . . 9 (𝐸𝑊𝐸 ∈ V)
23 opm 4246 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ ↔ (𝐼 ∈ V ∧ 𝐸 ∈ V))
24 n0r 3448 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ ⟨𝐼, 𝐸⟩ → ⟨𝐼, 𝐸⟩ ≠ ∅)
2523, 24sylbir 135 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝐸 ∈ V) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2621, 22, 25syl2an 289 . . . . . . . 8 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2726adantl 277 . . . . . . 7 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ≠ ∅)
28 disjsn2 3667 . . . . . . 7 (⟨𝐼, 𝐸⟩ ≠ ∅ → ({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅)
29 disjdif2 3513 . . . . . . 7 (({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅ → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3027, 28, 293syl 17 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3120, 30uneq12d 3302 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅})) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3218, 31eqtrid 2232 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3332funeqd 5250 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) ↔ Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
3417, 33mpbird 167 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
35 simpll 527 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → 𝐺𝑉)
36 opexg 4240 . . . . . 6 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
3736adantl 277 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ∈ V)
38 setsvalg 12506 . . . . 5 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3935, 37, 38syl2anc 411 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
4039difeq1d 3264 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
4140funeqd 5250 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
4234, 41mpbird 167 1 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wex 1502  wcel 2158  wne 2357  Vcvv 2749  cdif 3138  cun 3139  cin 3140  c0 3434  {csn 3604  cop 3607  dom cdm 4638  cres 4640  Fun wfun 5222  (class class class)co 5888   sSet csts 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sets 12483
This theorem is referenced by:  setsn0fun  12513
  Copyright terms: Public domain W3C validator