ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresid GIF version

Theorem cnvresid 5395
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid ( I ↾ 𝐴) = ( I ↾ 𝐴)

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 5133 . . 3 I = I
21eqcomi 2233 . 2 I = I
3 funi 5350 . . 3 Fun I
4 funeq 5338 . . 3 ( I = I → (Fun I ↔ Fun I ))
53, 4mpbii 148 . 2 ( I = I → Fun I )
6 funcnvres 5394 . . 3 (Fun I → ( I ↾ 𝐴) = ( I ↾ ( I “ 𝐴)))
7 imai 5084 . . . 4 ( I “ 𝐴) = 𝐴
81, 7reseq12i 5003 . . 3 ( I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴)
96, 8eqtrdi 2278 . 2 (Fun I → ( I ↾ 𝐴) = ( I ↾ 𝐴))
102, 5, 9mp2b 8 1 ( I ↾ 𝐴) = ( I ↾ 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1395   I cid 4379  ccnv 4718  cres 4721  cima 4722  Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320
This theorem is referenced by:  fcoi1  5506  f1oi  5611  xnn0nnen  10659  ssidcn  14884  idhmeo  14991
  Copyright terms: Public domain W3C validator