| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvresid | GIF version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 5075 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ I = ◡ I |
| 3 | funi 5291 | . . 3 ⊢ Fun I | |
| 4 | funeq 5279 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
| 5 | 3, 4 | mpbii 148 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres 5332 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
| 7 | imai 5026 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
| 8 | 1, 7 | reseq12i 4945 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
| 9 | 6, 8 | eqtrdi 2245 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
| 10 | 2, 5, 9 | mp2b 8 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 I cid 4324 ◡ccnv 4663 ↾ cres 4666 “ cima 4667 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 |
| This theorem is referenced by: fcoi1 5441 f1oi 5545 xnn0nnen 10546 ssidcn 14530 idhmeo 14637 |
| Copyright terms: Public domain | W3C validator |