| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvresid | GIF version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 5106 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | eqcomi 2211 | . 2 ⊢ I = ◡ I |
| 3 | funi 5322 | . . 3 ⊢ Fun I | |
| 4 | funeq 5310 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
| 5 | 3, 4 | mpbii 148 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres 5366 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
| 7 | imai 5057 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
| 8 | 1, 7 | reseq12i 4976 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
| 9 | 6, 8 | eqtrdi 2256 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
| 10 | 2, 5, 9 | mp2b 8 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 I cid 4353 ◡ccnv 4692 ↾ cres 4695 “ cima 4696 Fun wfun 5284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 |
| This theorem is referenced by: fcoi1 5478 f1oi 5583 xnn0nnen 10619 ssidcn 14797 idhmeo 14904 |
| Copyright terms: Public domain | W3C validator |