| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvresid | GIF version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 5133 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ I = ◡ I |
| 3 | funi 5350 | . . 3 ⊢ Fun I | |
| 4 | funeq 5338 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
| 5 | 3, 4 | mpbii 148 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
| 6 | funcnvres 5394 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
| 7 | imai 5084 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
| 8 | 1, 7 | reseq12i 5003 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
| 9 | 6, 8 | eqtrdi 2278 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
| 10 | 2, 5, 9 | mp2b 8 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 I cid 4379 ◡ccnv 4718 ↾ cres 4721 “ cima 4722 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 |
| This theorem is referenced by: fcoi1 5506 f1oi 5611 xnn0nnen 10659 ssidcn 14884 idhmeo 14991 |
| Copyright terms: Public domain | W3C validator |