Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvresid | GIF version |
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
Ref | Expression |
---|---|
cnvresid | ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 5008 | . . 3 ⊢ ◡ I = I | |
2 | 1 | eqcomi 2169 | . 2 ⊢ I = ◡ I |
3 | funi 5220 | . . 3 ⊢ Fun I | |
4 | funeq 5208 | . . 3 ⊢ ( I = ◡ I → (Fun I ↔ Fun ◡ I )) | |
5 | 3, 4 | mpbii 147 | . 2 ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres 5261 | . . 3 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = (◡ I ↾ ( I “ 𝐴))) | |
7 | imai 4960 | . . . 4 ⊢ ( I “ 𝐴) = 𝐴 | |
8 | 1, 7 | reseq12i 4882 | . . 3 ⊢ (◡ I ↾ ( I “ 𝐴)) = ( I ↾ 𝐴) |
9 | 6, 8 | eqtrdi 2215 | . 2 ⊢ (Fun ◡ I → ◡( I ↾ 𝐴) = ( I ↾ 𝐴)) |
10 | 2, 5, 9 | mp2b 8 | 1 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 I cid 4266 ◡ccnv 4603 ↾ cres 4606 “ cima 4607 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 |
This theorem is referenced by: fcoi1 5368 f1oi 5470 ssidcn 12850 idhmeo 12957 |
Copyright terms: Public domain | W3C validator |