ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d GIF version

Theorem reseq1d 5004
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq1 4999 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-res 4731
This theorem is referenced by:  reseq12d  5006  fun2ssres  5361  funcnvres2  5396  funimaexg  5405  fresin  5506  offres  6286  tfrlemisucaccv  6477  tfrlemi1  6484  tfr1onlemsucaccv  6493  tfrcllemsucaccv  6506  freceq1  6544  freceq2  6545  fseq1p1m1  10298  setsresg  13078  setscom  13080  znle2  14624  dvcoapbr  15389  bj-charfundcALT  16196
  Copyright terms: Public domain W3C validator