| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1d | GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| reseq1d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | reseq1 4941 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ↾ cres 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-res 4676 |
| This theorem is referenced by: reseq12d 4948 fun2ssres 5302 funcnvres2 5334 funimaexg 5343 fresin 5439 offres 6201 tfrlemisucaccv 6392 tfrlemi1 6399 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 freceq1 6459 freceq2 6460 fseq1p1m1 10186 setsresg 12741 setscom 12743 znle2 14284 dvcoapbr 15027 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |