Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d GIF version

Theorem reseq1d 4828
 Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq1 4823 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ↾ cres 4551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-in 3083  df-res 4561 This theorem is referenced by:  reseq12d  4830  fun2ssres  5176  funcnvres2  5208  funimaexg  5217  fresin  5311  offres  6043  tfrlemisucaccv  6232  tfrlemi1  6239  tfr1onlemsucaccv  6248  tfrcllemsucaccv  6261  freceq1  6299  freceq2  6300  fseq1p1m1  9928  setsresg  12059  setscom  12061  dvcoapbr  12902
 Copyright terms: Public domain W3C validator