| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1d | GIF version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| reseq1d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | reseq1 4958 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ↾ cres 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-res 4691 |
| This theorem is referenced by: reseq12d 4965 fun2ssres 5319 funcnvres2 5354 funimaexg 5363 fresin 5461 offres 6227 tfrlemisucaccv 6418 tfrlemi1 6425 tfr1onlemsucaccv 6434 tfrcllemsucaccv 6447 freceq1 6485 freceq2 6486 fseq1p1m1 10223 setsresg 12914 setscom 12916 znle2 14458 dvcoapbr 15223 bj-charfundcALT 15819 |
| Copyright terms: Public domain | W3C validator |