Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1d | GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
reseq1d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | reseq1 4878 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-res 4616 |
This theorem is referenced by: reseq12d 4885 fun2ssres 5231 funcnvres2 5263 funimaexg 5272 fresin 5366 offres 6103 tfrlemisucaccv 6293 tfrlemi1 6300 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 freceq1 6360 freceq2 6361 fseq1p1m1 10029 setsresg 12432 setscom 12434 dvcoapbr 13311 bj-charfundcALT 13691 |
Copyright terms: Public domain | W3C validator |