ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d GIF version

Theorem reseq1d 4776
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq1 4771 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  cres 4501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-in 3043  df-res 4511
This theorem is referenced by:  reseq12d  4778  fun2ssres  5124  funcnvres2  5156  funimaexg  5165  fresin  5259  offres  5987  tfrlemisucaccv  6176  tfrlemi1  6183  tfr1onlemsucaccv  6192  tfrcllemsucaccv  6205  freceq1  6243  freceq2  6244  fseq1p1m1  9764  setsresg  11837  setscom  11839
  Copyright terms: Public domain W3C validator