![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1d | GIF version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
reseq1d | ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | reseq1 4937 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ↾ cres 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-res 4672 |
This theorem is referenced by: reseq12d 4944 fun2ssres 5298 funcnvres2 5330 funimaexg 5339 fresin 5433 offres 6189 tfrlemisucaccv 6380 tfrlemi1 6387 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 freceq1 6447 freceq2 6448 fseq1p1m1 10163 setsresg 12659 setscom 12661 znle2 14151 dvcoapbr 14886 bj-charfundcALT 15371 |
Copyright terms: Public domain | W3C validator |