ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d GIF version

Theorem reseq1d 4980
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reseq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 reseq1 4975 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  cres 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-res 4708
This theorem is referenced by:  reseq12d  4982  fun2ssres  5337  funcnvres2  5372  funimaexg  5381  fresin  5480  offres  6250  tfrlemisucaccv  6441  tfrlemi1  6448  tfr1onlemsucaccv  6457  tfrcllemsucaccv  6470  freceq1  6508  freceq2  6509  fseq1p1m1  10258  setsresg  13036  setscom  13038  znle2  14581  dvcoapbr  15346  bj-charfundcALT  16082
  Copyright terms: Public domain W3C validator