ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 4953
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
reseq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 𝐴 = 𝐵
2 reseq2 4951 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cres 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-opab 4105  df-xp 4679  df-res 4685
This theorem is referenced by:  reseq12i  4954  rescom  4981  resdmdfsn  4999  rescnvcnv  5142  resdm2  5170  funcnvres  5341  funimaexg  5352  resdif  5538  frecfnom  6477  facnn  10853  fac0  10854  expcnv  11734  setsslid  12802  uptx  14664  txcn  14665
  Copyright terms: Public domain W3C validator