Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 4856
 Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
reseq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 𝐴 = 𝐵
2 reseq2 4854 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1332   ↾ cres 4581 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-in 3104  df-opab 4022  df-xp 4585  df-res 4591 This theorem is referenced by:  reseq12i  4857  rescom  4884  resdmdfsn  4902  rescnvcnv  5041  resdm2  5069  funcnvres  5236  funimaexg  5247  resdif  5429  frecfnom  6338  facnn  10578  fac0  10579  expcnv  11378  setsslid  12179  uptx  12613  txcn  12614
 Copyright terms: Public domain W3C validator