| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2i | GIF version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq2 4951 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ↾ cres 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-opab 4105 df-xp 4679 df-res 4685 |
| This theorem is referenced by: reseq12i 4954 rescom 4981 resdmdfsn 4999 rescnvcnv 5142 resdm2 5170 funcnvres 5341 funimaexg 5352 resdif 5538 frecfnom 6477 facnn 10853 fac0 10854 expcnv 11734 setsslid 12802 uptx 14664 txcn 14665 |
| Copyright terms: Public domain | W3C validator |