ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 4888
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
reseq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 𝐴 = 𝐵
2 reseq2 4886 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  reseq12i  4889  rescom  4916  resdmdfsn  4934  rescnvcnv  5073  resdm2  5101  funcnvres  5271  funimaexg  5282  resdif  5464  frecfnom  6380  facnn  10661  fac0  10662  expcnv  11467  setsslid  12466  uptx  13068  txcn  13069
  Copyright terms: Public domain W3C validator