ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 4881
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
reseq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 𝐴 = 𝐵
2 reseq2 4879 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-opab 4044  df-xp 4610  df-res 4616
This theorem is referenced by:  reseq12i  4882  rescom  4909  resdmdfsn  4927  rescnvcnv  5066  resdm2  5094  funcnvres  5261  funimaexg  5272  resdif  5454  frecfnom  6369  facnn  10640  fac0  10641  expcnv  11445  setsslid  12444  uptx  12914  txcn  12915
  Copyright terms: Public domain W3C validator