ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i GIF version

Theorem reseq2i 5001
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
reseq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2 𝐴 = 𝐵
2 reseq2 4999 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by:  reseq12i  5002  rescom  5029  resdmdfsn  5047  rescnvcnv  5190  resdm2  5218  funcnvres  5393  funimaexg  5404  resdif  5593  frecfnom  6545  facnn  10944  fac0  10945  expcnv  12010  setsslid  13078  uptx  14942  txcn  14943
  Copyright terms: Public domain W3C validator