Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2i | GIF version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq2i | ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq2 4854 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ↾ cres 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 df-opab 4022 df-xp 4585 df-res 4591 |
This theorem is referenced by: reseq12i 4857 rescom 4884 resdmdfsn 4902 rescnvcnv 5041 resdm2 5069 funcnvres 5236 funimaexg 5247 resdif 5429 frecfnom 6338 facnn 10578 fac0 10579 expcnv 11378 setsslid 12179 uptx 12613 txcn 12614 |
Copyright terms: Public domain | W3C validator |