| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) | 
| Ref | Expression | 
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq1 4940 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ↾ cres 4665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-res 4675 | 
| This theorem is referenced by: reseq12i 4944 resindm 4988 resmpt 4994 resmpt3 4995 resmptf 4996 opabresid 4999 rescnvcnv 5132 coires1 5187 fcoi1 5438 fvsnun1 5759 fvsnun2 5760 resoprab 6018 resmpo 6020 ofmres 6193 f1stres 6217 f2ndres 6218 df1st2 6277 df2nd2 6278 dftpos2 6319 tfr2a 6379 freccllem 6460 frecfcllem 6462 frecsuclem 6464 djuf1olemr 7120 divfnzn 9695 cnmptid 14517 xmsxmet2 14699 msmet2 14700 cnfldms 14772 | 
| Copyright terms: Public domain | W3C validator |