Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq1 4878 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-res 4616 |
This theorem is referenced by: reseq12i 4882 resindm 4926 resmpt 4932 resmpt3 4933 resmptf 4934 opabresid 4937 rescnvcnv 5066 coires1 5121 fcoi1 5368 fvsnun1 5682 fvsnun2 5683 resoprab 5938 resmpo 5940 ofmres 6104 f1stres 6127 f2ndres 6128 df1st2 6187 df2nd2 6188 dftpos2 6229 tfr2a 6289 freccllem 6370 frecfcllem 6372 frecsuclem 6374 djuf1olemr 7019 divfnzn 9559 cnmptid 12921 xmsxmet2 13103 msmet2 13104 |
Copyright terms: Public domain | W3C validator |