Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq1 4894 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ↾ cres 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-res 4632 |
This theorem is referenced by: reseq12i 4898 resindm 4942 resmpt 4948 resmpt3 4949 resmptf 4950 opabresid 4953 rescnvcnv 5083 coires1 5138 fcoi1 5388 fvsnun1 5705 fvsnun2 5706 resoprab 5961 resmpo 5963 ofmres 6127 f1stres 6150 f2ndres 6151 df1st2 6210 df2nd2 6211 dftpos2 6252 tfr2a 6312 freccllem 6393 frecfcllem 6395 frecsuclem 6397 djuf1olemr 7043 divfnzn 9594 cnmptid 13352 xmsxmet2 13534 msmet2 13535 |
Copyright terms: Public domain | W3C validator |