| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq1 4958 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ↾ cres 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-res 4691 |
| This theorem is referenced by: reseq12i 4962 resindm 5006 resmpt 5012 resmpt3 5013 resmptf 5014 opabresid 5017 rescnvcnv 5150 coires1 5205 fcoi1 5463 fvsnun1 5788 fvsnun2 5789 resoprab 6048 resmpo 6050 ofmres 6228 f1stres 6252 f2ndres 6253 df1st2 6312 df2nd2 6313 dftpos2 6354 tfr2a 6414 freccllem 6495 frecfcllem 6497 frecsuclem 6499 djuf1olemr 7163 divfnzn 9749 cnmptid 14797 xmsxmet2 14979 msmet2 14980 cnfldms 15052 |
| Copyright terms: Public domain | W3C validator |