| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq1 4999 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ↾ cres 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-res 4731 |
| This theorem is referenced by: reseq12i 5003 resindm 5047 resmpt 5053 resmpt3 5054 resmptf 5055 opabresid 5058 rescnvcnv 5191 coires1 5246 fcoi1 5508 fvsnun1 5840 fvsnun2 5841 resoprab 6106 resmpo 6108 ofmres 6287 f1stres 6311 f2ndres 6312 df1st2 6371 df2nd2 6372 dftpos2 6413 tfr2a 6473 freccllem 6554 frecfcllem 6556 frecsuclem 6558 djuf1olemr 7229 divfnzn 9824 cnmptid 14963 xmsxmet2 15145 msmet2 15146 cnfldms 15218 |
| Copyright terms: Public domain | W3C validator |