| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | reseq1 4995 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ↾ cres 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-res 4728 |
| This theorem is referenced by: reseq12i 4999 resindm 5043 resmpt 5049 resmpt3 5050 resmptf 5051 opabresid 5054 rescnvcnv 5187 coires1 5242 fcoi1 5502 fvsnun1 5829 fvsnun2 5830 resoprab 6091 resmpo 6093 ofmres 6271 f1stres 6295 f2ndres 6296 df1st2 6355 df2nd2 6356 dftpos2 6397 tfr2a 6457 freccllem 6538 frecfcllem 6540 frecsuclem 6542 djuf1olemr 7209 divfnzn 9804 cnmptid 14940 xmsxmet2 15122 msmet2 15123 cnfldms 15195 |
| Copyright terms: Public domain | W3C validator |