Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq1 4853 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ↾ cres 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 df-res 4591 |
This theorem is referenced by: reseq12i 4857 resindm 4901 resmpt 4907 resmpt3 4908 resmptf 4909 opabresid 4912 rescnvcnv 5041 coires1 5096 fcoi1 5343 fvsnun1 5657 fvsnun2 5658 resoprab 5907 resmpo 5909 ofmres 6074 f1stres 6097 f2ndres 6098 df1st2 6156 df2nd2 6157 dftpos2 6198 tfr2a 6258 freccllem 6339 frecfcllem 6341 frecsuclem 6343 djuf1olemr 6984 divfnzn 9508 cnmptid 12628 xmsxmet2 12810 msmet2 12811 |
Copyright terms: Public domain | W3C validator |