![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reseq1i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | reseq1 4707 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ↾ cres 4440 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-in 3005 df-res 4450 |
This theorem is referenced by: reseq12i 4711 resindm 4754 resmpt 4760 resmpt3 4761 resmptf 4762 opabresid 4765 rescnvcnv 4893 coires1 4948 fcoi1 5191 fvsnun1 5494 fvsnun2 5495 resoprab 5741 resmpt2 5743 ofmres 5907 f1stres 5930 f2ndres 5931 df1st2 5984 df2nd2 5985 dftpos2 6026 tfr2a 6086 freccllem 6167 frecfcllem 6169 frecsuclem 6171 djuf1olemr 6746 divfnzn 9106 |
Copyright terms: Public domain | W3C validator |