ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inimass GIF version

Theorem inimass 5020
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Assertion
Ref Expression
inimass ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inimass
StepHypRef Expression
1 rnin 5013 . 2 ran ((𝐴𝐶) ∩ (𝐵𝐶)) ⊆ (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
2 df-ima 4617 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
3 resindir 4900 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
43rneqi 4832 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
52, 4eqtri 2186 . 2 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐶) ∩ (𝐵𝐶))
6 df-ima 4617 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 4617 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7ineq12i 3321 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = (ran (𝐴𝐶) ∩ ran (𝐵𝐶))
91, 5, 83sstr4i 3183 1 ((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  cin 3115  wss 3116  ran crn 4605  cres 4606  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator