![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inimass | GIF version |
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
inimass | ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnin 5076 | . 2 ⊢ ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) ⊆ (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) | |
2 | df-ima 4673 | . . 3 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐵) ↾ 𝐶) | |
3 | resindir 4959 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) | |
4 | 3 | rneqi 4891 | . . 3 ⊢ ran ((𝐴 ∩ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
5 | 2, 4 | eqtri 2214 | . 2 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
6 | df-ima 4673 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
7 | df-ima 4673 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
8 | 6, 7 | ineq12i 3359 | . 2 ⊢ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) |
9 | 1, 5, 8 | 3sstr4i 3221 | 1 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3153 ⊆ wss 3154 ran crn 4661 ↾ cres 4662 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |