Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inimass | GIF version |
Description: The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
inimass | ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnin 5020 | . 2 ⊢ ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) ⊆ (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) | |
2 | df-ima 4624 | . . 3 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ∩ 𝐵) ↾ 𝐶) | |
3 | resindir 4907 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) | |
4 | 3 | rneqi 4839 | . . 3 ⊢ ran ((𝐴 ∩ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
5 | 2, 4 | eqtri 2191 | . 2 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) = ran ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
6 | df-ima 4624 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
7 | df-ima 4624 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
8 | 6, 7 | ineq12i 3326 | . 2 ⊢ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∩ ran (𝐵 ↾ 𝐶)) |
9 | 1, 5, 8 | 3sstr4i 3188 | 1 ⊢ ((𝐴 ∩ 𝐵) “ 𝐶) ⊆ ((𝐴 “ 𝐶) ∩ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 3120 ⊆ wss 3121 ran crn 4612 ↾ cres 4613 “ cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |