ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnreseql GIF version

Theorem fnreseql 5647
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 5348 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
213adant2 1018 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
3 fnssres 5348 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
433adant1 1017 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
5 fneqeql 5645 . . 3 (((𝐹𝑋) Fn 𝑋 ∧ (𝐺𝑋) Fn 𝑋) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
62, 4, 5syl2anc 411 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
7 resindir 4941 . . . . . 6 ((𝐹𝐺) ↾ 𝑋) = ((𝐹𝑋) ∩ (𝐺𝑋))
87dmeqi 4846 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = dom ((𝐹𝑋) ∩ (𝐺𝑋))
9 dmres 4946 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹𝐺))
108, 9eqtr3i 2212 . . . 4 dom ((𝐹𝑋) ∩ (𝐺𝑋)) = (𝑋 ∩ dom (𝐹𝐺))
1110eqeq1i 2197 . . 3 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
12 df-ss 3157 . . 3 (𝑋 ⊆ dom (𝐹𝐺) ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
1311, 12bitr4i 187 . 2 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋𝑋 ⊆ dom (𝐹𝐺))
146, 13bitrdi 196 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  cin 3143  wss 3144  dom cdm 4644  cres 4646   Fn wfn 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator