ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnreseql GIF version

Theorem fnreseql 5595
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 5301 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
213adant2 1006 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
3 fnssres 5301 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
433adant1 1005 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
5 fneqeql 5593 . . 3 (((𝐹𝑋) Fn 𝑋 ∧ (𝐺𝑋) Fn 𝑋) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
62, 4, 5syl2anc 409 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
7 resindir 4900 . . . . . 6 ((𝐹𝐺) ↾ 𝑋) = ((𝐹𝑋) ∩ (𝐺𝑋))
87dmeqi 4805 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = dom ((𝐹𝑋) ∩ (𝐺𝑋))
9 dmres 4905 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹𝐺))
108, 9eqtr3i 2188 . . . 4 dom ((𝐹𝑋) ∩ (𝐺𝑋)) = (𝑋 ∩ dom (𝐹𝐺))
1110eqeq1i 2173 . . 3 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
12 df-ss 3129 . . 3 (𝑋 ⊆ dom (𝐹𝐺) ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
1311, 12bitr4i 186 . 2 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋𝑋 ⊆ dom (𝐹𝐺))
146, 13bitrdi 195 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968   = wceq 1343  cin 3115  wss 3116  dom cdm 4604  cres 4606   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator