| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fnreseql | GIF version | ||
| Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| fnreseql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnssres 5371 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | |
| 2 | 1 | 3adant2 1018 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | 
| 3 | fnssres 5371 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | |
| 4 | 3 | 3adant1 1017 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | 
| 5 | fneqeql 5670 | . . 3 ⊢ (((𝐹 ↾ 𝑋) Fn 𝑋 ∧ (𝐺 ↾ 𝑋) Fn 𝑋) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | |
| 6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | 
| 7 | resindir 4962 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ↾ 𝑋) = ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | |
| 8 | 7 | dmeqi 4867 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | 
| 9 | dmres 4967 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | |
| 10 | 8, 9 | eqtr3i 2219 | . . . 4 ⊢ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | 
| 11 | 10 | eqeq1i 2204 | . . 3 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | 
| 12 | df-ss 3170 | . . 3 ⊢ (𝑋 ⊆ dom (𝐹 ∩ 𝐺) ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | |
| 13 | 11, 12 | bitr4i 187 | . 2 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) | 
| 14 | 6, 13 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∩ cin 3156 ⊆ wss 3157 dom cdm 4663 ↾ cres 4665 Fn wfn 5253 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |