ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnreseql GIF version

Theorem fnreseql 5628
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
fnreseql ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))

Proof of Theorem fnreseql
StepHypRef Expression
1 fnssres 5331 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
213adant2 1016 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐹𝑋) Fn 𝑋)
3 fnssres 5331 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
433adant1 1015 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) Fn 𝑋)
5 fneqeql 5626 . . 3 (((𝐹𝑋) Fn 𝑋 ∧ (𝐺𝑋) Fn 𝑋) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
62, 4, 5syl2anc 411 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋))
7 resindir 4925 . . . . . 6 ((𝐹𝐺) ↾ 𝑋) = ((𝐹𝑋) ∩ (𝐺𝑋))
87dmeqi 4830 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = dom ((𝐹𝑋) ∩ (𝐺𝑋))
9 dmres 4930 . . . . 5 dom ((𝐹𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹𝐺))
108, 9eqtr3i 2200 . . . 4 dom ((𝐹𝑋) ∩ (𝐺𝑋)) = (𝑋 ∩ dom (𝐹𝐺))
1110eqeq1i 2185 . . 3 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
12 df-ss 3144 . . 3 (𝑋 ⊆ dom (𝐹𝐺) ↔ (𝑋 ∩ dom (𝐹𝐺)) = 𝑋)
1311, 12bitr4i 187 . 2 (dom ((𝐹𝑋) ∩ (𝐺𝑋)) = 𝑋𝑋 ⊆ dom (𝐹𝐺))
146, 13bitrdi 196 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = (𝐺𝑋) ↔ 𝑋 ⊆ dom (𝐹𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 978   = wceq 1353  cin 3130  wss 3131  dom cdm 4628  cres 4630   Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator