![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnreseql | GIF version |
Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
fnreseql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 5331 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | |
2 | 1 | 3adant2 1016 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) |
3 | fnssres 5331 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | |
4 | 3 | 3adant1 1015 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) |
5 | fneqeql 5626 | . . 3 ⊢ (((𝐹 ↾ 𝑋) Fn 𝑋 ∧ (𝐺 ↾ 𝑋) Fn 𝑋) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | |
6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) |
7 | resindir 4925 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ↾ 𝑋) = ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | |
8 | 7 | dmeqi 4830 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) |
9 | dmres 4930 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | |
10 | 8, 9 | eqtr3i 2200 | . . . 4 ⊢ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) |
11 | 10 | eqeq1i 2185 | . . 3 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) |
12 | df-ss 3144 | . . 3 ⊢ (𝑋 ⊆ dom (𝐹 ∩ 𝐺) ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | |
13 | 11, 12 | bitr4i 187 | . 2 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) |
14 | 6, 13 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∩ cin 3130 ⊆ wss 3131 dom cdm 4628 ↾ cres 4630 Fn wfn 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |