| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnreseql | GIF version | ||
| Description: Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnreseql | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssres 5395 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) | |
| 2 | 1 | 3adant2 1019 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐹 ↾ 𝑋) Fn 𝑋) |
| 3 | fnssres 5395 | . . . 4 ⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) | |
| 4 | 3 | 3adant1 1018 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝐺 ↾ 𝑋) Fn 𝑋) |
| 5 | fneqeql 5698 | . . 3 ⊢ (((𝐹 ↾ 𝑋) Fn 𝑋 ∧ (𝐺 ↾ 𝑋) Fn 𝑋) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) | |
| 6 | 2, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋)) |
| 7 | resindir 4981 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ↾ 𝑋) = ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) | |
| 8 | 7 | dmeqi 4885 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) |
| 9 | dmres 4986 | . . . . 5 ⊢ dom ((𝐹 ∩ 𝐺) ↾ 𝑋) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) | |
| 10 | 8, 9 | eqtr3i 2229 | . . . 4 ⊢ dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = (𝑋 ∩ dom (𝐹 ∩ 𝐺)) |
| 11 | 10 | eqeq1i 2214 | . . 3 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) |
| 12 | df-ss 3181 | . . 3 ⊢ (𝑋 ⊆ dom (𝐹 ∩ 𝐺) ↔ (𝑋 ∩ dom (𝐹 ∩ 𝐺)) = 𝑋) | |
| 13 | 11, 12 | bitr4i 187 | . 2 ⊢ (dom ((𝐹 ↾ 𝑋) ∩ (𝐺 ↾ 𝑋)) = 𝑋 ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺)) |
| 14 | 6, 13 | bitrdi 196 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ↔ 𝑋 ⊆ dom (𝐹 ∩ 𝐺))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∩ cin 3167 ⊆ wss 3168 dom cdm 4680 ↾ cres 4682 Fn wfn 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |