| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimd | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimd.1 | ⊢ Ⅎ𝑥𝜑 |
| rexlimd.2 | ⊢ Ⅎ𝑥𝜒 |
| rexlimd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexlimd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 2578 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 5 | 4 | r19.23 2615 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 6 | 3, 5 | sylib 122 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: rexlimdv 2623 ralxfrALT 4519 fvmptt 5681 ffnfv 5748 nneneq 6966 ac6sfi 7007 prarloclem3step 7622 prmuloc2 7693 caucvgprprlemaddq 7834 axpre-suploclemres 8027 lbzbi 9750 divalglemeunn 12282 divalglemeuneg 12284 oddpwdclemdvds 12542 oddpwdclemndvds 12543 trirec0 16098 |
| Copyright terms: Public domain | W3C validator |