| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimd | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimd.1 | ⊢ Ⅎ𝑥𝜑 |
| rexlimd.2 | ⊢ Ⅎ𝑥𝜒 |
| rexlimd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexlimd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 2568 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 5 | 4 | r19.23 2605 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 6 | 3, 5 | sylib 122 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimdv 2613 ralxfrALT 4503 fvmptt 5656 ffnfv 5723 nneneq 6927 ac6sfi 6968 prarloclem3step 7580 prmuloc2 7651 caucvgprprlemaddq 7792 axpre-suploclemres 7985 lbzbi 9707 divalglemeunn 12103 divalglemeuneg 12105 oddpwdclemdvds 12363 oddpwdclemndvds 12364 trirec0 15775 |
| Copyright terms: Public domain | W3C validator |