![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimd | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimd.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd.2 | ⊢ Ⅎ𝑥𝜒 |
rexlimd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 2558 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | r19.23 2595 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
6 | 3, 5 | sylib 122 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1470 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-ral 2470 df-rex 2471 |
This theorem is referenced by: rexlimdv 2603 ralxfrALT 4479 fvmptt 5620 ffnfv 5687 nneneq 6871 ac6sfi 6912 prarloclem3step 7509 prmuloc2 7580 caucvgprprlemaddq 7721 axpre-suploclemres 7914 lbzbi 9630 divalglemeunn 11940 divalglemeuneg 11942 oddpwdclemdvds 12184 oddpwdclemndvds 12185 trirec0 15146 |
Copyright terms: Public domain | W3C validator |