ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimd GIF version

Theorem rexlimd 2621
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimd.1 𝑥𝜑
rexlimd.2 𝑥𝜒
rexlimd.3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
rexlimd (𝜑 → (∃𝑥𝐴 𝜓𝜒))

Proof of Theorem rexlimd
StepHypRef Expression
1 rexlimd.1 . . 3 𝑥𝜑
2 rexlimd.3 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
31, 2ralrimi 2578 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
4 rexlimd.2 . . 3 𝑥𝜒
54r19.23 2615 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ (∃𝑥𝐴 𝜓𝜒))
63, 5sylib 122 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1484  wcel 2177  wral 2485  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2490  df-rex 2491
This theorem is referenced by:  rexlimdv  2623  ralxfrALT  4519  fvmptt  5681  ffnfv  5748  nneneq  6966  ac6sfi  7007  prarloclem3step  7622  prmuloc2  7693  caucvgprprlemaddq  7834  axpre-suploclemres  8027  lbzbi  9750  divalglemeunn  12282  divalglemeuneg  12284  oddpwdclemdvds  12542  oddpwdclemndvds  12543  trirec0  16098
  Copyright terms: Public domain W3C validator