Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimd | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimd.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd.2 | ⊢ Ⅎ𝑥𝜒 |
rexlimd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 2537 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | r19.23 2574 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
6 | 3, 5 | sylib 121 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: rexlimdv 2582 ralxfrALT 4445 fvmptt 5577 ffnfv 5643 nneneq 6823 ac6sfi 6864 prarloclem3step 7437 prmuloc2 7508 caucvgprprlemaddq 7649 axpre-suploclemres 7842 lbzbi 9554 divalglemeunn 11858 divalglemeuneg 11860 oddpwdclemdvds 12102 oddpwdclemndvds 12103 trirec0 13923 |
Copyright terms: Public domain | W3C validator |