Step | Hyp | Ref
| Expression |
1 | | divalglemnn 11877 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∃𝑟 ∈ ℤ
∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
2 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑞((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈
ℤ)) |
3 | | nfre1 2513 |
. . . . . . 7
⊢
Ⅎ𝑞∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) |
4 | | nfv 1521 |
. . . . . . 7
⊢
Ⅎ𝑞 𝑟 = 𝑠 |
5 | 3, 4 | nfim 1565 |
. . . . . 6
⊢
Ⅎ𝑞(∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠) |
6 | | oveq1 5860 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑡 → (𝑞 · 𝐷) = (𝑡 · 𝐷)) |
7 | 6 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑡 → ((𝑞 · 𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠)) |
8 | 7 | eqeq2d 2182 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑡 → (𝑁 = ((𝑞 · 𝐷) + 𝑠) ↔ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) |
9 | 8 | 3anbi3d 1313 |
. . . . . . . . 9
⊢ (𝑞 = 𝑡 → ((0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))) |
10 | 9 | cbvrexv 2697 |
. . . . . . . 8
⊢
(∃𝑞 ∈
ℤ (0 ≤ 𝑠 ∧
𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ ∃𝑡 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) |
11 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑞 < 𝑡) |
12 | | simplr 525 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐷 ∈
ℕ) |
13 | 12 | ad4antr 491 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℕ) |
14 | | simplrl 530 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑟 ∈
ℤ) |
15 | 14 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 ∈ ℤ) |
16 | | simplrr 531 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑠 ∈
ℤ) |
17 | 16 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 ∈ ℤ) |
18 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈
ℤ) |
19 | 18 | ad3antrrr 489 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ) |
20 | | simplr 525 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℤ) |
21 | | simpr1 998 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑠) |
22 | | simpr2 999 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷)) |
23 | 22 | ad2antrr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < (abs‘𝐷)) |
24 | 13 | nnred 8891 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℝ) |
25 | 13 | nnnn0d 9188 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈
ℕ0) |
26 | 25 | nn0ge0d 9191 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝐷) |
27 | 24, 26 | absidd 11131 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (abs‘𝐷) = 𝐷) |
28 | 23, 27 | breqtrd 4015 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < 𝐷) |
29 | | simpr3 1000 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟)) |
30 | 29 | ad2antrr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟)) |
31 | | simpr3 1000 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑡 · 𝐷) + 𝑠)) |
32 | 30, 31 | eqtr3d 2205 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠)) |
33 | 13, 15, 17, 19, 20, 21, 28, 32 | divalglemnqt 11879 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑞 < 𝑡) |
34 | 33 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → ¬ 𝑞 < 𝑡) |
35 | 11, 34 | pm2.21dd 615 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑟 = 𝑠) |
36 | 13 | adantr 274 |
. . . . . . . . . . . . 13
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℕ) |
37 | 36 | nnzd 9333 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℤ) |
38 | 15 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 ∈ ℤ) |
39 | 17 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑠 ∈ ℤ) |
40 | 19 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 ∈ ℤ) |
41 | 20 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑡 ∈ ℤ) |
42 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 = 𝑡) |
43 | 32 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠)) |
44 | 37, 38, 39, 40, 41, 42, 43 | divalglemqt 11878 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 = 𝑠) |
45 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞) |
46 | | simpr1 998 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 0 ≤ 𝑟) |
47 | 46 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑟) |
48 | | simpr2 999 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < (abs‘𝐷)) |
49 | 48, 27 | breqtrd 4015 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < 𝐷) |
50 | 31, 30 | eqtr3d 2205 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((𝑡 · 𝐷) + 𝑠) = ((𝑞 · 𝐷) + 𝑟)) |
51 | 13, 17, 15, 20, 19, 47, 49, 50 | divalglemnqt 11879 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑡 < 𝑞) |
52 | 51 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → ¬ 𝑡 < 𝑞) |
53 | 45, 52 | pm2.21dd 615 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑟 = 𝑠) |
54 | | ztri3or 9255 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑞 < 𝑡 ∨ 𝑞 = 𝑡 ∨ 𝑡 < 𝑞)) |
55 | 19, 20, 54 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡 ∨ 𝑞 = 𝑡 ∨ 𝑡 < 𝑞)) |
56 | 35, 44, 53, 55 | mpjao3dan 1302 |
. . . . . . . . . 10
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 = 𝑠) |
57 | 56 | ex 114 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) → ((0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
58 | 57 | rexlimdva 2587 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑡 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
59 | 10, 58 | syl5bi 151 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℕ) ∧ (𝑟 ∈
ℤ ∧ 𝑠 ∈
ℤ)) ∧ 𝑞 ∈
ℤ) ∧ (0 ≤ 𝑟
∧ 𝑟 <
(abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
60 | 59 | exp31 362 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑞 ∈ ℤ → ((0 ≤
𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)))) |
61 | 2, 5, 60 | rexlimd 2584 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) →
(∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))) |
62 | 61 | impd 252 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) →
((∃𝑞 ∈ ℤ
(0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
63 | 62 | ralrimivva 2552 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∀𝑟 ∈ ℤ
∀𝑠 ∈ ℤ
((∃𝑞 ∈ ℤ
(0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
64 | | breq2 3993 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (0 ≤ 𝑟 ↔ 0 ≤ 𝑠)) |
65 | | breq1 3992 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (𝑟 < (abs‘𝐷) ↔ 𝑠 < (abs‘𝐷))) |
66 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑠)) |
67 | 66 | eqeq2d 2182 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) |
68 | 64, 65, 67 | 3anbi123d 1307 |
. . . . 5
⊢ (𝑟 = 𝑠 → ((0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))) |
69 | 68 | rexbidv 2471 |
. . . 4
⊢ (𝑟 = 𝑠 → (∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))) |
70 | 69 | rmo4 2923 |
. . 3
⊢
(∃*𝑟 ∈
ℤ ∃𝑞 ∈
ℤ (0 ≤ 𝑟 ∧
𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
71 | 63, 70 | sylibr 133 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∃*𝑟 ∈ ℤ
∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
72 | | reu5 2682 |
. 2
⊢
(∃!𝑟 ∈
ℤ ∃𝑞 ∈
ℤ (0 ≤ 𝑟 ∧
𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))) |
73 | 1, 71, 72 | sylanbrc 415 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) →
∃!𝑟 ∈ ℤ
∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |