ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 GIF version

Theorem prmuloc2 7323
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7322 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prmuloc2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7322 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)))
2 nfv 1491 . . 3 𝑥(⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵)
3 nfre1 2450 . . 3 𝑥𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈
4 simpr1 970 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑥𝐿)
5 simpr3 972 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))
6 simplrr 508 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦Q)
7 mulidnq 7145 . . . . . . . . . . 11 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
8 breq1 3898 . . . . . . . . . . 11 ((𝑦 ·Q 1Q) = 𝑦 → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
96, 7, 83syl 17 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
105, 9mpbid 146 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦 <Q (𝑥 ·Q 𝐵))
11 simplll 505 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ⟨𝐿, 𝑈⟩ ∈ P)
12 simpr2 971 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦𝑈)
13 prcunqu 7241 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1411, 12, 13syl2anc 406 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1510, 14mpd 13 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑥 ·Q 𝐵) ∈ 𝑈)
16 rspe 2455 . . . . . . . 8 ((𝑥𝐿 ∧ (𝑥 ·Q 𝐵) ∈ 𝑈) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
174, 15, 16syl2anc 406 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
1817ex 114 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
1918anassrs 395 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) ∧ 𝑦Q) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2019rexlimdva 2523 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2120ex 114 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (𝑥Q → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)))
222, 3, 21rexlimd 2520 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
231, 22mpd 13 1 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  wrex 2391  cop 3496   class class class wbr 3895  (class class class)co 5728  Qcnq 7036  1Qc1q 7037   ·Q cmq 7039   <Q cltq 7041  Pcnp 7047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222
This theorem is referenced by:  recexprlem1ssl  7389  recexprlem1ssu  7390
  Copyright terms: Public domain W3C validator