ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 GIF version

Theorem prmuloc2 7687
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7686 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prmuloc2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7686 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)))
2 nfv 1552 . . 3 𝑥(⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵)
3 nfre1 2550 . . 3 𝑥𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈
4 simpr1 1006 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑥𝐿)
5 simpr3 1008 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))
6 simplrr 536 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦Q)
7 mulidnq 7509 . . . . . . . . . . 11 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
8 breq1 4050 . . . . . . . . . . 11 ((𝑦 ·Q 1Q) = 𝑦 → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
96, 7, 83syl 17 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
105, 9mpbid 147 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦 <Q (𝑥 ·Q 𝐵))
11 simplll 533 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ⟨𝐿, 𝑈⟩ ∈ P)
12 simpr2 1007 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦𝑈)
13 prcunqu 7605 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1411, 12, 13syl2anc 411 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1510, 14mpd 13 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑥 ·Q 𝐵) ∈ 𝑈)
16 rspe 2556 . . . . . . . 8 ((𝑥𝐿 ∧ (𝑥 ·Q 𝐵) ∈ 𝑈) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
174, 15, 16syl2anc 411 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
1817ex 115 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
1918anassrs 400 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) ∧ 𝑦Q) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2019rexlimdva 2624 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2120ex 115 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (𝑥Q → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)))
222, 3, 21rexlimd 2621 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
231, 22mpd 13 1 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wrex 2486  cop 3637   class class class wbr 4047  (class class class)co 5951  Qcnq 7400  1Qc1q 7401   ·Q cmq 7403   <Q cltq 7405  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586
This theorem is referenced by:  recexprlem1ssl  7753  recexprlem1ssu  7754
  Copyright terms: Public domain W3C validator