ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 GIF version

Theorem prmuloc2 7722
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7721 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prmuloc2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7721 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)))
2 nfv 1554 . . 3 𝑥(⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵)
3 nfre1 2553 . . 3 𝑥𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈
4 simpr1 1008 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑥𝐿)
5 simpr3 1010 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))
6 simplrr 536 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦Q)
7 mulidnq 7544 . . . . . . . . . . 11 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
8 breq1 4065 . . . . . . . . . . 11 ((𝑦 ·Q 1Q) = 𝑦 → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
96, 7, 83syl 17 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ((𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵) ↔ 𝑦 <Q (𝑥 ·Q 𝐵)))
105, 9mpbid 147 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦 <Q (𝑥 ·Q 𝐵))
11 simplll 533 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ⟨𝐿, 𝑈⟩ ∈ P)
12 simpr2 1009 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → 𝑦𝑈)
13 prcunqu 7640 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1411, 12, 13syl2anc 411 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑦 <Q (𝑥 ·Q 𝐵) → (𝑥 ·Q 𝐵) ∈ 𝑈))
1510, 14mpd 13 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → (𝑥 ·Q 𝐵) ∈ 𝑈)
16 rspe 2559 . . . . . . . 8 ((𝑥𝐿 ∧ (𝑥 ·Q 𝐵) ∈ 𝑈) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
174, 15, 16syl2anc 411 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) ∧ (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵))) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
1817ex 115 . . . . . 6 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ (𝑥Q𝑦Q)) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
1918anassrs 400 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) ∧ 𝑦Q) → ((𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2019rexlimdva 2628 . . . 4 (((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) ∧ 𝑥Q) → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
2120ex 115 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (𝑥Q → (∃𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)))
222, 3, 21rexlimd 2625 . 2 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → (∃𝑥Q𝑦Q (𝑥𝐿𝑦𝑈 ∧ (𝑦 ·Q 1Q) <Q (𝑥 ·Q 𝐵)) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈))
231, 22mpd 13 1 ((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wrex 2489  cop 3649   class class class wbr 4062  (class class class)co 5974  Qcnq 7435  1Qc1q 7436   ·Q cmq 7438   <Q cltq 7440  Pcnp 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621
This theorem is referenced by:  recexprlem1ssl  7788  recexprlem1ssu  7789
  Copyright terms: Public domain W3C validator