Step | Hyp | Ref
| Expression |
1 | | simp3 989 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 < 0) |
2 | 1 | lt0ne0d 8411 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ≠ 0) |
3 | | divalglemex 11859 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
4 | 2, 3 | syld3an3 1273 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
5 | | nfv 1516 |
. . . . . 6
⊢
Ⅎ𝑞((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈
ℤ)) |
6 | | nfre1 2509 |
. . . . . . 7
⊢
Ⅎ𝑞∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) |
7 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑞 𝑟 = 𝑠 |
8 | 6, 7 | nfim 1560 |
. . . . . 6
⊢
Ⅎ𝑞(∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠) |
9 | | oveq1 5849 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑡 → (𝑞 · 𝐷) = (𝑡 · 𝐷)) |
10 | 9 | oveq1d 5857 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑡 → ((𝑞 · 𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠)) |
11 | 10 | eqeq2d 2177 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑡 → (𝑁 = ((𝑞 · 𝐷) + 𝑠) ↔ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) |
12 | 11 | 3anbi3d 1308 |
. . . . . . . . 9
⊢ (𝑞 = 𝑡 → ((0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))) |
13 | 12 | cbvrexv 2693 |
. . . . . . . 8
⊢
(∃𝑞 ∈
ℤ (0 ≤ 𝑠 ∧
𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ ∃𝑡 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) |
14 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑞 < 𝑡) |
15 | | simp2 988 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈
ℤ) |
16 | 15 | znegcld 9315 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈
ℤ) |
17 | 15 | zred 9313 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈
ℝ) |
18 | 17 | lt0neg1d 8413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷)) |
19 | 1, 18 | mpbid 146 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 0 < -𝐷) |
20 | | elnnz 9201 |
. . . . . . . . . . . . . . . . 17
⊢ (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 <
-𝐷)) |
21 | 16, 19, 20 | sylanbrc 414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈
ℕ) |
22 | 21 | ad5antr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝐷 ∈ ℕ) |
23 | | simplrr 526 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑠 ∈
ℤ) |
24 | 23 | ad3antrrr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 ∈ ℤ) |
25 | | simplrl 525 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑟 ∈
ℤ) |
26 | 25 | ad3antrrr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 ∈ ℤ) |
27 | | simplr 520 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℤ) |
28 | 27 | znegcld 9315 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑡 ∈ ℤ) |
29 | | simpr 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈
ℤ) |
30 | 29 | ad3antrrr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ) |
31 | 30 | znegcld 9315 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑞 ∈ ℤ) |
32 | | simpr1 993 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 0 ≤ 𝑟) |
33 | 32 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑟) |
34 | | simpr2 994 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < (abs‘𝐷)) |
35 | | simpll2 1027 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 ∈
ℤ) |
36 | 35 | ad3antrrr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℤ) |
37 | 36 | zred 9313 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℝ) |
38 | | 0red 7900 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ∈ ℝ) |
39 | | simpll3 1028 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 < 0) |
40 | 39 | ad3antrrr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 < 0) |
41 | 37, 38, 40 | ltled 8017 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ≤ 0) |
42 | 37, 41 | absnidd 11102 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (abs‘𝐷) = -𝐷) |
43 | 34, 42 | breqtrd 4008 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < -𝐷) |
44 | | simpr3 995 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑡 · 𝐷) + 𝑠)) |
45 | 27 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℂ) |
46 | 36 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℂ) |
47 | 45, 46 | mul2negd 8311 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑡 · -𝐷) = (𝑡 · 𝐷)) |
48 | 47 | oveq1d 5857 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠)) |
49 | 44, 48 | eqtr4d 2201 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑡 · -𝐷) + 𝑠)) |
50 | | simpr3 995 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟)) |
51 | 50 | ad2antrr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟)) |
52 | 30 | zcnd 9314 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℂ) |
53 | 52, 46 | mul2negd 8311 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑞 · -𝐷) = (𝑞 · 𝐷)) |
54 | 53 | oveq1d 5857 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑟)) |
55 | 51, 54 | eqtr4d 2201 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑞 · -𝐷) + 𝑟)) |
56 | 49, 55 | eqtr3d 2200 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((-𝑞 · -𝐷) + 𝑟)) |
57 | 22, 24, 26, 28, 31, 33, 43, 56 | divalglemnqt 11857 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑡 < -𝑞) |
58 | 30 | zred 9313 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℝ) |
59 | 27 | zred 9313 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℝ) |
60 | 58, 59 | ltnegd 8421 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡 ↔ -𝑡 < -𝑞)) |
61 | 57, 60 | mtbird 663 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑞 < 𝑡) |
62 | 61 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → ¬ 𝑞 < 𝑡) |
63 | 14, 62 | pm2.21dd 610 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑟 = 𝑠) |
64 | 36 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℤ) |
65 | 26 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 ∈ ℤ) |
66 | 24 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑠 ∈ ℤ) |
67 | 30 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 ∈ ℤ) |
68 | 27 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑡 ∈ ℤ) |
69 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 = 𝑡) |
70 | 51 | adantr 274 |
. . . . . . . . . . . . 13
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑞 · 𝐷) + 𝑟)) |
71 | 44 | adantr 274 |
. . . . . . . . . . . . 13
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑡 · 𝐷) + 𝑠)) |
72 | 70, 71 | eqtr3d 2200 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠)) |
73 | 64, 65, 66, 67, 68, 69, 72 | divalglemqt 11856 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 = 𝑠) |
74 | | simpr 109 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞) |
75 | | simpr1 993 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑠) |
76 | | simpr2 994 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷)) |
77 | 76 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < (abs‘𝐷)) |
78 | 77, 42 | breqtrd 4008 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < -𝐷) |
79 | 55, 49 | eqtr3d 2200 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((-𝑡 · -𝐷) + 𝑠)) |
80 | 22, 26, 24, 31, 28, 75, 78, 79 | divalglemnqt 11857 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑞 < -𝑡) |
81 | 59, 58 | ltnegd 8421 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑡 < 𝑞 ↔ -𝑞 < -𝑡)) |
82 | 80, 81 | mtbird 663 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑡 < 𝑞) |
83 | 82 | adantr 274 |
. . . . . . . . . . . 12
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → ¬ 𝑡 < 𝑞) |
84 | 74, 83 | pm2.21dd 610 |
. . . . . . . . . . 11
⊢
((((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑟 = 𝑠) |
85 | | simplr 520 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑞 ∈ ℤ) |
86 | 85 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ) |
87 | | ztri3or 9234 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑞 < 𝑡 ∨ 𝑞 = 𝑡 ∨ 𝑡 < 𝑞)) |
88 | 86, 27, 87 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡 ∨ 𝑞 = 𝑡 ∨ 𝑡 < 𝑞)) |
89 | 63, 73, 84, 88 | mpjao3dan 1297 |
. . . . . . . . . 10
⊢
(((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 = 𝑠) |
90 | 89 | ex 114 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) → ((0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
91 | 90 | rexlimdva 2583 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑡 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
92 | 13, 91 | syl5bi 151 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℤ ∧ 𝐷 ∈
ℤ ∧ 𝐷 < 0)
∧ (𝑟 ∈ ℤ
∧ 𝑠 ∈ ℤ))
∧ 𝑞 ∈ ℤ)
∧ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)) |
93 | 92 | exp31 362 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑞 ∈ ℤ → ((0 ≤
𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)))) |
94 | 5, 8, 93 | rexlimd 2580 |
. . . . 5
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) →
(∃𝑞 ∈ ℤ (0
≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))) |
95 | 94 | impd 252 |
. . . 4
⊢ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) →
((∃𝑞 ∈ ℤ
(0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
96 | 95 | ralrimivva 2548 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
97 | | breq2 3986 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (0 ≤ 𝑟 ↔ 0 ≤ 𝑠)) |
98 | | breq1 3985 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (𝑟 < (abs‘𝐷) ↔ 𝑠 < (abs‘𝐷))) |
99 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑠)) |
100 | 99 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) |
101 | 97, 98, 100 | 3anbi123d 1302 |
. . . . 5
⊢ (𝑟 = 𝑠 → ((0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))) |
102 | 101 | rexbidv 2467 |
. . . 4
⊢ (𝑟 = 𝑠 → (∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))) |
103 | 102 | rmo4 2919 |
. . 3
⊢
(∃*𝑟 ∈
ℤ ∃𝑞 ∈
ℤ (0 ≤ 𝑟 ∧
𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠 ∧ 𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)) |
104 | 96, 103 | sylibr 133 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |
105 | | reu5 2678 |
. 2
⊢
(∃!𝑟 ∈
ℤ ∃𝑞 ∈
ℤ (0 ≤ 𝑟 ∧
𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))) |
106 | 4, 104, 105 | sylanbrc 414 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) |