ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeuneg GIF version

Theorem divalglemeuneg 11860
Description: Lemma for divalg 11861. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeuneg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemeuneg
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 989 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 < 0)
21lt0ne0d 8411 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ≠ 0)
3 divalglemex 11859 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
42, 3syld3an3 1273 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
5 nfv 1516 . . . . . 6 𝑞((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
6 nfre1 2509 . . . . . . 7 𝑞𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))
7 nfv 1516 . . . . . . 7 𝑞 𝑟 = 𝑠
86, 7nfim 1560 . . . . . 6 𝑞(∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)
9 oveq1 5849 . . . . . . . . . . . 12 (𝑞 = 𝑡 → (𝑞 · 𝐷) = (𝑡 · 𝐷))
109oveq1d 5857 . . . . . . . . . . 11 (𝑞 = 𝑡 → ((𝑞 · 𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠))
1110eqeq2d 2177 . . . . . . . . . 10 (𝑞 = 𝑡 → (𝑁 = ((𝑞 · 𝐷) + 𝑠) ↔ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
12113anbi3d 1308 . . . . . . . . 9 (𝑞 = 𝑡 → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))))
1312cbvrexv 2693 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ ∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
14 simpr 109 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑞 < 𝑡)
15 simp2 988 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈ ℤ)
1615znegcld 9315 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈ ℤ)
1715zred 9313 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈ ℝ)
1817lt0neg1d 8413 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷))
191, 18mpbid 146 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 0 < -𝐷)
20 elnnz 9201 . . . . . . . . . . . . . . . . 17 (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 < -𝐷))
2116, 19, 20sylanbrc 414 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈ ℕ)
2221ad5antr 488 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝐷 ∈ ℕ)
23 simplrr 526 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑠 ∈ ℤ)
2423ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 ∈ ℤ)
25 simplrl 525 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑟 ∈ ℤ)
2625ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 ∈ ℤ)
27 simplr 520 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℤ)
2827znegcld 9315 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑡 ∈ ℤ)
29 simpr 109 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈ ℤ)
3029ad3antrrr 484 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ)
3130znegcld 9315 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑞 ∈ ℤ)
32 simpr1 993 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 0 ≤ 𝑟)
3332ad2antrr 480 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑟)
34 simpr2 994 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < (abs‘𝐷))
35 simpll2 1027 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 ∈ ℤ)
3635ad3antrrr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℤ)
3736zred 9313 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℝ)
38 0red 7900 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ∈ ℝ)
39 simpll3 1028 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 < 0)
4039ad3antrrr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 < 0)
4137, 38, 40ltled 8017 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ≤ 0)
4237, 41absnidd 11102 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (abs‘𝐷) = -𝐷)
4334, 42breqtrd 4008 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < -𝐷)
44 simpr3 995 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑡 · 𝐷) + 𝑠))
4527zcnd 9314 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℂ)
4636zcnd 9314 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℂ)
4745, 46mul2negd 8311 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑡 · -𝐷) = (𝑡 · 𝐷))
4847oveq1d 5857 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠))
4944, 48eqtr4d 2201 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑡 · -𝐷) + 𝑠))
50 simpr3 995 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
5150ad2antrr 480 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
5230zcnd 9314 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℂ)
5352, 46mul2negd 8311 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑞 · -𝐷) = (𝑞 · 𝐷))
5453oveq1d 5857 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑟))
5551, 54eqtr4d 2201 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑞 · -𝐷) + 𝑟))
5649, 55eqtr3d 2200 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((-𝑞 · -𝐷) + 𝑟))
5722, 24, 26, 28, 31, 33, 43, 56divalglemnqt 11857 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑡 < -𝑞)
5830zred 9313 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℝ)
5927zred 9313 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℝ)
6058, 59ltnegd 8421 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡 ↔ -𝑡 < -𝑞))
6157, 60mtbird 663 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑞 < 𝑡)
6261adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → ¬ 𝑞 < 𝑡)
6314, 62pm2.21dd 610 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑟 = 𝑠)
6436adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℤ)
6526adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 ∈ ℤ)
6624adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑠 ∈ ℤ)
6730adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 ∈ ℤ)
6827adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑡 ∈ ℤ)
69 simpr 109 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 = 𝑡)
7051adantr 274 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
7144adantr 274 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑡 · 𝐷) + 𝑠))
7270, 71eqtr3d 2200 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠))
7364, 65, 66, 67, 68, 69, 72divalglemqt 11856 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 = 𝑠)
74 simpr 109 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
75 simpr1 993 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑠)
76 simpr2 994 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
7776ad2antrr 480 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < (abs‘𝐷))
7877, 42breqtrd 4008 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < -𝐷)
7955, 49eqtr3d 2200 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((-𝑡 · -𝐷) + 𝑠))
8022, 26, 24, 31, 28, 75, 78, 79divalglemnqt 11857 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑞 < -𝑡)
8159, 58ltnegd 8421 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑡 < 𝑞 ↔ -𝑞 < -𝑡))
8280, 81mtbird 663 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑡 < 𝑞)
8382adantr 274 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → ¬ 𝑡 < 𝑞)
8474, 83pm2.21dd 610 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑟 = 𝑠)
85 simplr 520 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑞 ∈ ℤ)
8685ad2antrr 480 . . . . . . . . . . . 12 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ)
87 ztri3or 9234 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
8886, 27, 87syl2anc 409 . . . . . . . . . . 11 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
8963, 73, 84, 88mpjao3dan 1297 . . . . . . . . . 10 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)
9089ex 114 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9190rexlimdva 2583 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9213, 91syl5bi 151 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9392exp31 362 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑞 ∈ ℤ → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))))
945, 8, 93rexlimd 2580 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)))
9594impd 252 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
9695ralrimivva 2548 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
97 breq2 3986 . . . . . 6 (𝑟 = 𝑠 → (0 ≤ 𝑟 ↔ 0 ≤ 𝑠))
98 breq1 3985 . . . . . 6 (𝑟 = 𝑠 → (𝑟 < (abs‘𝐷) ↔ 𝑠 < (abs‘𝐷)))
99 oveq2 5850 . . . . . . 7 (𝑟 = 𝑠 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑠))
10099eqeq2d 2177 . . . . . 6 (𝑟 = 𝑠 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))
10197, 98, 1003anbi123d 1302 . . . . 5 (𝑟 = 𝑠 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
102101rexbidv 2467 . . . 4 (𝑟 = 𝑠 → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
103102rmo4 2919 . . 3 (∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
10496, 103sylibr 133 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
105 reu5 2678 . 2 (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
1064, 104, 105sylanbrc 414 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3o 967  w3a 968   = wceq 1343  wcel 2136  wne 2336  wral 2444  wrex 2445  ∃!wreu 2446  ∃*wrmo 2447   class class class wbr 3982  cfv 5188  (class class class)co 5842  0cc0 7753   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  -cneg 8070  cn 8857  cz 9191  abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  divalg  11861
  Copyright terms: Public domain W3C validator