ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemeuneg GIF version

Theorem divalglemeuneg 11911
Description: Lemma for divalg 11912. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
Assertion
Ref Expression
divalglemeuneg ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟

Proof of Theorem divalglemeuneg
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 999 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 < 0)
21lt0ne0d 8460 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ≠ 0)
3 divalglemex 11910 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
42, 3syld3an3 1283 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
5 nfv 1528 . . . . . 6 𝑞((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
6 nfre1 2520 . . . . . . 7 𝑞𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))
7 nfv 1528 . . . . . . 7 𝑞 𝑟 = 𝑠
86, 7nfim 1572 . . . . . 6 𝑞(∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)
9 oveq1 5876 . . . . . . . . . . . 12 (𝑞 = 𝑡 → (𝑞 · 𝐷) = (𝑡 · 𝐷))
109oveq1d 5884 . . . . . . . . . . 11 (𝑞 = 𝑡 → ((𝑞 · 𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠))
1110eqeq2d 2189 . . . . . . . . . 10 (𝑞 = 𝑡 → (𝑁 = ((𝑞 · 𝐷) + 𝑠) ↔ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
12113anbi3d 1318 . . . . . . . . 9 (𝑞 = 𝑡 → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))))
1312cbvrexv 2704 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) ↔ ∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)))
14 simpr 110 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑞 < 𝑡)
15 simp2 998 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈ ℤ)
1615znegcld 9366 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈ ℤ)
1715zred 9364 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 𝐷 ∈ ℝ)
1817lt0neg1d 8462 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → (𝐷 < 0 ↔ 0 < -𝐷))
191, 18mpbid 147 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → 0 < -𝐷)
20 elnnz 9252 . . . . . . . . . . . . . . . . 17 (-𝐷 ∈ ℕ ↔ (-𝐷 ∈ ℤ ∧ 0 < -𝐷))
2116, 19, 20sylanbrc 417 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → -𝐷 ∈ ℕ)
2221ad5antr 496 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝐷 ∈ ℕ)
23 simplrr 536 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑠 ∈ ℤ)
2423ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 ∈ ℤ)
25 simplrl 535 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑟 ∈ ℤ)
2625ad3antrrr 492 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 ∈ ℤ)
27 simplr 528 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℤ)
2827znegcld 9366 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑡 ∈ ℤ)
29 simpr 110 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝑞 ∈ ℤ)
3029ad3antrrr 492 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ)
3130znegcld 9366 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → -𝑞 ∈ ℤ)
32 simpr1 1003 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 0 ≤ 𝑟)
3332ad2antrr 488 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑟)
34 simpr2 1004 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < (abs‘𝐷))
35 simpll2 1037 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 ∈ ℤ)
3635ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℤ)
3736zred 9364 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℝ)
38 0red 7949 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ∈ ℝ)
39 simpll3 1038 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) → 𝐷 < 0)
4039ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 < 0)
4137, 38, 40ltled 8066 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ≤ 0)
4237, 41absnidd 11153 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (abs‘𝐷) = -𝐷)
4334, 42breqtrd 4026 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑠 < -𝐷)
44 simpr3 1005 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑡 · 𝐷) + 𝑠))
4527zcnd 9365 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℂ)
4636zcnd 9365 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝐷 ∈ ℂ)
4745, 46mul2negd 8360 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑡 · -𝐷) = (𝑡 · 𝐷))
4847oveq1d 5884 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((𝑡 · 𝐷) + 𝑠))
4944, 48eqtr4d 2213 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑡 · -𝐷) + 𝑠))
50 simpr3 1005 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
5150ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
5230zcnd 9365 . . . . . . . . . . . . . . . . . . 19 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℂ)
5352, 46mul2negd 8360 . . . . . . . . . . . . . . . . . 18 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (-𝑞 · -𝐷) = (𝑞 · 𝐷))
5453oveq1d 5884 . . . . . . . . . . . . . . . . 17 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑟))
5551, 54eqtr4d 2213 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑁 = ((-𝑞 · -𝐷) + 𝑟))
5649, 55eqtr3d 2212 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑡 · -𝐷) + 𝑠) = ((-𝑞 · -𝐷) + 𝑟))
5722, 24, 26, 28, 31, 33, 43, 56divalglemnqt 11908 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑡 < -𝑞)
5830zred 9364 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℝ)
5927zred 9364 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑡 ∈ ℝ)
6058, 59ltnegd 8470 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡 ↔ -𝑡 < -𝑞))
6157, 60mtbird 673 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑞 < 𝑡)
6261adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → ¬ 𝑞 < 𝑡)
6314, 62pm2.21dd 620 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 < 𝑡) → 𝑟 = 𝑠)
6436adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝐷 ∈ ℤ)
6526adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 ∈ ℤ)
6624adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑠 ∈ ℤ)
6730adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 ∈ ℤ)
6827adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑡 ∈ ℤ)
69 simpr 110 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑞 = 𝑡)
7051adantr 276 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑞 · 𝐷) + 𝑟))
7144adantr 276 . . . . . . . . . . . . 13 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑁 = ((𝑡 · 𝐷) + 𝑠))
7270, 71eqtr3d 2212 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → ((𝑞 · 𝐷) + 𝑟) = ((𝑡 · 𝐷) + 𝑠))
7364, 65, 66, 67, 68, 69, 72divalglemqt 11907 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑞 = 𝑡) → 𝑟 = 𝑠)
74 simpr 110 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑡 < 𝑞)
75 simpr1 1003 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 0 ≤ 𝑠)
76 simpr2 1004 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑟 < (abs‘𝐷))
7776ad2antrr 488 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < (abs‘𝐷))
7877, 42breqtrd 4026 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 < -𝐷)
7955, 49eqtr3d 2212 . . . . . . . . . . . . . . 15 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ((-𝑞 · -𝐷) + 𝑟) = ((-𝑡 · -𝐷) + 𝑠))
8022, 26, 24, 31, 28, 75, 78, 79divalglemnqt 11908 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ -𝑞 < -𝑡)
8159, 58ltnegd 8470 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑡 < 𝑞 ↔ -𝑞 < -𝑡))
8280, 81mtbird 673 . . . . . . . . . . . . 13 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → ¬ 𝑡 < 𝑞)
8382adantr 276 . . . . . . . . . . . 12 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → ¬ 𝑡 < 𝑞)
8474, 83pm2.21dd 620 . . . . . . . . . . 11 ((((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) ∧ 𝑡 < 𝑞) → 𝑟 = 𝑠)
85 simplr 528 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → 𝑞 ∈ ℤ)
8685ad2antrr 488 . . . . . . . . . . . 12 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑞 ∈ ℤ)
87 ztri3or 9285 . . . . . . . . . . . 12 ((𝑞 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
8886, 27, 87syl2anc 411 . . . . . . . . . . 11 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → (𝑞 < 𝑡𝑞 = 𝑡𝑡 < 𝑞))
8963, 73, 84, 88mpjao3dan 1307 . . . . . . . . . 10 (((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) ∧ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠))) → 𝑟 = 𝑠)
9089ex 115 . . . . . . . . 9 ((((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) ∧ 𝑡 ∈ ℤ) → ((0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9190rexlimdva 2594 . . . . . . . 8 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑡 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑡 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9213, 91biimtrid 152 . . . . . . 7 (((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ 𝑞 ∈ ℤ) ∧ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))
9392exp31 364 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑞 ∈ ℤ → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠))))
945, 8, 93rexlimd 2591 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) → (∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠)) → 𝑟 = 𝑠)))
9594impd 254 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
9695ralrimivva 2559 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
97 breq2 4004 . . . . . 6 (𝑟 = 𝑠 → (0 ≤ 𝑟 ↔ 0 ≤ 𝑠))
98 breq1 4003 . . . . . 6 (𝑟 = 𝑠 → (𝑟 < (abs‘𝐷) ↔ 𝑠 < (abs‘𝐷)))
99 oveq2 5877 . . . . . . 7 (𝑟 = 𝑠 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑠))
10099eqeq2d 2189 . . . . . 6 (𝑟 = 𝑠 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑠)))
10197, 98, 1003anbi123d 1312 . . . . 5 (𝑟 = 𝑠 → ((0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
102101rexbidv 2478 . . . 4 (𝑟 = 𝑠 → (∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))))
103102rmo4 2930 . . 3 (∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∀𝑟 ∈ ℤ ∀𝑠 ∈ ℤ ((∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑠𝑠 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑠))) → 𝑟 = 𝑠))
10496, 103sylibr 134 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
105 reu5 2689 . 2 (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ (∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ∧ ∃*𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
1064, 104, 105sylanbrc 417 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3o 977  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455  wrex 2456  ∃!wreu 2457  ∃*wrmo 2458   class class class wbr 4000  cfv 5212  (class class class)co 5869  0cc0 7802   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  -cneg 8119  cn 8908  cz 9242  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  divalg  11912
  Copyright terms: Public domain W3C validator