| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version | ||
| Description: Weaker version of rexlimiv 2616. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2616 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: r19.29vva 2650 eliun 3930 reusv3i 4505 elrnmptg 4929 fun11iun 5542 fmpt 5729 fliftfun 5864 elrnmpo 6058 releldm2 6270 tfrlem4 6398 iinerm 6693 elixpsn 6821 isfi 6851 cardcl 7287 cardval3ex 7291 ltbtwnnqq 7527 recexprlemlol 7738 recexprlemupu 7740 suplocsr 7921 restsspw 13023 rhmdvdsr 13879 ssnei 14565 tgcnp 14623 xmetunirn 14772 metss 14908 metrest 14920 |
| Copyright terms: Public domain | W3C validator |