Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version |
Description: Weaker version of rexlimiv 2581. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2581 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: r19.29vva 2615 eliun 3875 reusv3i 4442 elrnmptg 4861 fun11iun 5461 fmpt 5643 fliftfun 5772 elrnmpo 5963 releldm2 6161 tfrlem4 6289 iinerm 6581 elixpsn 6709 isfi 6735 cardcl 7145 cardval3ex 7149 ltbtwnnqq 7364 recexprlemlol 7575 recexprlemupu 7577 suplocsr 7758 restsspw 12576 ssnei 12904 tgcnp 12962 xmetunirn 13111 metss 13247 metrest 13259 |
Copyright terms: Public domain | W3C validator |