| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version | ||
| Description: Weaker version of rexlimiv 2617. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2617 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: r19.29vva 2651 eliun 3931 reusv3i 4506 elrnmptg 4930 fun11iun 5543 fmpt 5730 fliftfun 5865 elrnmpo 6059 releldm2 6271 tfrlem4 6399 iinerm 6694 elixpsn 6822 isfi 6852 cardcl 7288 cardval3ex 7292 ltbtwnnqq 7528 recexprlemlol 7739 recexprlemupu 7741 suplocsr 7922 restsspw 13081 rhmdvdsr 13937 ssnei 14623 tgcnp 14681 xmetunirn 14830 metss 14966 metrest 14978 |
| Copyright terms: Public domain | W3C validator |