| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version | ||
| Description: Weaker version of rexlimiv 2608. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29vva 2642 eliun 3921 reusv3i 4495 elrnmptg 4919 fun11iun 5528 fmpt 5715 fliftfun 5846 elrnmpo 6040 releldm2 6252 tfrlem4 6380 iinerm 6675 elixpsn 6803 isfi 6829 cardcl 7259 cardval3ex 7263 ltbtwnnqq 7499 recexprlemlol 7710 recexprlemupu 7712 suplocsr 7893 restsspw 12951 rhmdvdsr 13807 ssnei 14471 tgcnp 14529 xmetunirn 14678 metss 14814 metrest 14826 |
| Copyright terms: Public domain | W3C validator |