ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivw GIF version

Theorem rexlimivw 2610
Description: Weaker version of rexlimiv 2608. (Contributed by FL, 19-Sep-2011.)
Hypothesis
Ref Expression
rexlimivw.1 (𝜑𝜓)
Assertion
Ref Expression
rexlimivw (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimivw
StepHypRef Expression
1 rexlimivw.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32rexlimiv 2608 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.29vva  2642  eliun  3921  reusv3i  4495  elrnmptg  4919  fun11iun  5528  fmpt  5715  fliftfun  5846  elrnmpo  6040  releldm2  6252  tfrlem4  6380  iinerm  6675  elixpsn  6803  isfi  6829  cardcl  7261  cardval3ex  7265  ltbtwnnqq  7501  recexprlemlol  7712  recexprlemupu  7714  suplocsr  7895  restsspw  12953  rhmdvdsr  13809  ssnei  14495  tgcnp  14553  xmetunirn  14702  metss  14838  metrest  14850
  Copyright terms: Public domain W3C validator