| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version | ||
| Description: Weaker version of rexlimiv 2642. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2642 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: r19.29vva 2676 eliun 3968 reusv3i 4549 elrnmptg 4975 fun11iun 5592 fmpt 5784 fliftfun 5919 elrnmpo 6117 releldm2 6329 tfrlem4 6457 iinerm 6752 elixpsn 6880 isfi 6910 cardcl 7349 cardval3ex 7353 ltbtwnnqq 7598 recexprlemlol 7809 recexprlemupu 7811 suplocsr 7992 restsspw 13277 rhmdvdsr 14133 ssnei 14819 tgcnp 14877 xmetunirn 15026 metss 15162 metrest 15174 |
| Copyright terms: Public domain | W3C validator |