Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version |
Description: Weaker version of rexlimiv 2577. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2577 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: r19.29vva 2611 eliun 3870 reusv3i 4437 elrnmptg 4856 fun11iun 5453 fmpt 5635 fliftfun 5764 elrnmpo 5955 releldm2 6153 tfrlem4 6281 iinerm 6573 elixpsn 6701 isfi 6727 cardcl 7137 cardval3ex 7141 ltbtwnnqq 7356 recexprlemlol 7567 recexprlemupu 7569 suplocsr 7750 restsspw 12566 ssnei 12791 tgcnp 12849 xmetunirn 12998 metss 13134 metrest 13146 |
Copyright terms: Public domain | W3C validator |