ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivw GIF version

Theorem rexlimivw 2610
Description: Weaker version of rexlimiv 2608. (Contributed by FL, 19-Sep-2011.)
Hypothesis
Ref Expression
rexlimivw.1 (𝜑𝜓)
Assertion
Ref Expression
rexlimivw (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimivw
StepHypRef Expression
1 rexlimivw.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32rexlimiv 2608 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.29vva  2642  eliun  3921  reusv3i  4495  elrnmptg  4919  fun11iun  5528  fmpt  5715  fliftfun  5846  elrnmpo  6040  releldm2  6247  tfrlem4  6375  iinerm  6670  elixpsn  6798  isfi  6824  cardcl  7252  cardval3ex  7256  ltbtwnnqq  7487  recexprlemlol  7698  recexprlemupu  7700  suplocsr  7881  restsspw  12939  rhmdvdsr  13778  ssnei  14434  tgcnp  14492  xmetunirn  14641  metss  14777  metrest  14789
  Copyright terms: Public domain W3C validator