Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version |
Description: Weaker version of rexlimiv 2581. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2581 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: r19.29vva 2615 eliun 3877 reusv3i 4444 elrnmptg 4863 fun11iun 5463 fmpt 5646 fliftfun 5775 elrnmpo 5966 releldm2 6164 tfrlem4 6292 iinerm 6585 elixpsn 6713 isfi 6739 cardcl 7158 cardval3ex 7162 ltbtwnnqq 7377 recexprlemlol 7588 recexprlemupu 7590 suplocsr 7771 restsspw 12589 ssnei 12945 tgcnp 13003 xmetunirn 13152 metss 13288 metrest 13300 |
Copyright terms: Public domain | W3C validator |