| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivw | GIF version | ||
| Description: Weaker version of rexlimiv 2608. (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| rexlimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rexlimivw | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29vva 2642 eliun 3921 reusv3i 4495 elrnmptg 4919 fun11iun 5528 fmpt 5715 fliftfun 5846 elrnmpo 6040 releldm2 6247 tfrlem4 6375 iinerm 6670 elixpsn 6798 isfi 6824 cardcl 7252 cardval3ex 7256 ltbtwnnqq 7487 recexprlemlol 7698 recexprlemupu 7700 suplocsr 7881 restsspw 12939 rhmdvdsr 13778 ssnei 14434 tgcnp 14492 xmetunirn 14641 metss 14777 metrest 14789 |
| Copyright terms: Public domain | W3C validator |