![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprnegg | GIF version |
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprneg.2 | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
opprnegg | ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | eqid 2177 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbasg 13253 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
4 | eqid 2177 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | 1, 4 | oppraddg 13254 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
6 | 5 | oveqd 5895 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑦(+g‘𝑅)𝑥) = (𝑦(+g‘𝑂)𝑥)) |
7 | eqid 2177 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | 1, 7 | oppr0g 13257 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) = (0g‘𝑂)) |
9 | 6, 8 | eqeq12d 2192 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑦(+g‘𝑅)𝑥) = (0g‘𝑅) ↔ (𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) |
10 | 3, 9 | riotaeqbidv 5837 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)) = (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) |
11 | 3, 10 | mpteq12dv 4087 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
12 | opprneg.2 | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
13 | 2, 4, 7, 12 | grpinvfvalg 12921 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)))) |
14 | 1 | opprex 13251 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
15 | eqid 2177 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
16 | eqid 2177 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
17 | eqid 2177 | . . . 4 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
18 | eqid 2177 | . . . 4 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
19 | 15, 16, 17, 18 | grpinvfvalg 12921 | . . 3 ⊢ (𝑂 ∈ V → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
20 | 14, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
21 | 11, 13, 20 | 3eqtr4d 2220 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ↦ cmpt 4066 ‘cfv 5218 ℩crio 5833 (class class class)co 5878 Basecbs 12465 +gcplusg 12539 0gc0g 12711 invgcminusg 12884 opprcoppr 13245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-tpos 6249 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-0g 12713 df-minusg 12887 df-oppr 13246 |
This theorem is referenced by: unitnegcl 13305 |
Copyright terms: Public domain | W3C validator |