ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprnegg GIF version

Theorem opprnegg 13960
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprneg.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
opprnegg (𝑅𝑉𝑁 = (invg𝑂))

Proof of Theorem opprnegg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2207 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13952 . . 3 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2207 . . . . . . 7 (+g𝑅) = (+g𝑅)
51, 4oppraddg 13953 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
65oveqd 5984 . . . . 5 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
7 eqid 2207 . . . . . 6 (0g𝑅) = (0g𝑅)
81, 7oppr0g 13958 . . . . 5 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
96, 8eqeq12d 2222 . . . 4 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = (0g𝑅) ↔ (𝑦(+g𝑂)𝑥) = (0g𝑂)))
103, 9riotaeqbidv 5925 . . 3 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅)) = (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂)))
113, 10mpteq12dv 4142 . 2 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
12 opprneg.2 . . 3 𝑁 = (invg𝑅)
132, 4, 7, 12grpinvfvalg 13489 . 2 (𝑅𝑉𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))))
141opprex 13950 . . 3 (𝑅𝑉𝑂 ∈ V)
15 eqid 2207 . . . 4 (Base‘𝑂) = (Base‘𝑂)
16 eqid 2207 . . . 4 (+g𝑂) = (+g𝑂)
17 eqid 2207 . . . 4 (0g𝑂) = (0g𝑂)
18 eqid 2207 . . . 4 (invg𝑂) = (invg𝑂)
1915, 16, 17, 18grpinvfvalg 13489 . . 3 (𝑂 ∈ V → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2014, 19syl 14 . 2 (𝑅𝑉 → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2111, 13, 203eqtr4d 2250 1 (𝑅𝑉𝑁 = (invg𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  Vcvv 2776  cmpt 4121  cfv 5290  crio 5921  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  0gc0g 13203  invgcminusg 13448  opprcoppr 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-minusg 13451  df-oppr 13945
This theorem is referenced by:  unitnegcl  14007
  Copyright terms: Public domain W3C validator