ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprnegg GIF version

Theorem opprnegg 14046
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprneg.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
opprnegg (𝑅𝑉𝑁 = (invg𝑂))

Proof of Theorem opprnegg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2229 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 14038 . . 3 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2229 . . . . . . 7 (+g𝑅) = (+g𝑅)
51, 4oppraddg 14039 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
65oveqd 6018 . . . . 5 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
7 eqid 2229 . . . . . 6 (0g𝑅) = (0g𝑅)
81, 7oppr0g 14044 . . . . 5 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
96, 8eqeq12d 2244 . . . 4 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = (0g𝑅) ↔ (𝑦(+g𝑂)𝑥) = (0g𝑂)))
103, 9riotaeqbidv 5957 . . 3 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅)) = (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂)))
113, 10mpteq12dv 4166 . 2 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
12 opprneg.2 . . 3 𝑁 = (invg𝑅)
132, 4, 7, 12grpinvfvalg 13575 . 2 (𝑅𝑉𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))))
141opprex 14036 . . 3 (𝑅𝑉𝑂 ∈ V)
15 eqid 2229 . . . 4 (Base‘𝑂) = (Base‘𝑂)
16 eqid 2229 . . . 4 (+g𝑂) = (+g𝑂)
17 eqid 2229 . . . 4 (0g𝑂) = (0g𝑂)
18 eqid 2229 . . . 4 (invg𝑂) = (invg𝑂)
1915, 16, 17, 18grpinvfvalg 13575 . . 3 (𝑂 ∈ V → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2014, 19syl 14 . 2 (𝑅𝑉 → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2111, 13, 203eqtr4d 2272 1 (𝑅𝑉𝑁 = (invg𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4145  cfv 5318  crio 5953  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  0gc0g 13289  invgcminusg 13534  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-minusg 13537  df-oppr 14031
This theorem is referenced by:  unitnegcl  14094
  Copyright terms: Public domain W3C validator