ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprnegg GIF version

Theorem opprnegg 13878
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprneg.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
opprnegg (𝑅𝑉𝑁 = (invg𝑂))

Proof of Theorem opprnegg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2205 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13870 . . 3 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2205 . . . . . . 7 (+g𝑅) = (+g𝑅)
51, 4oppraddg 13871 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
65oveqd 5963 . . . . 5 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
7 eqid 2205 . . . . . 6 (0g𝑅) = (0g𝑅)
81, 7oppr0g 13876 . . . . 5 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
96, 8eqeq12d 2220 . . . 4 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = (0g𝑅) ↔ (𝑦(+g𝑂)𝑥) = (0g𝑂)))
103, 9riotaeqbidv 5904 . . 3 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅)) = (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂)))
113, 10mpteq12dv 4127 . 2 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
12 opprneg.2 . . 3 𝑁 = (invg𝑅)
132, 4, 7, 12grpinvfvalg 13407 . 2 (𝑅𝑉𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))))
141opprex 13868 . . 3 (𝑅𝑉𝑂 ∈ V)
15 eqid 2205 . . . 4 (Base‘𝑂) = (Base‘𝑂)
16 eqid 2205 . . . 4 (+g𝑂) = (+g𝑂)
17 eqid 2205 . . . 4 (0g𝑂) = (0g𝑂)
18 eqid 2205 . . . 4 (invg𝑂) = (invg𝑂)
1915, 16, 17, 18grpinvfvalg 13407 . . 3 (𝑂 ∈ V → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2014, 19syl 14 . 2 (𝑅𝑉 → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2111, 13, 203eqtr4d 2248 1 (𝑅𝑉𝑁 = (invg𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772  cmpt 4106  cfv 5272  crio 5900  (class class class)co 5946  Basecbs 12865  +gcplusg 12942  0gc0g 13121  invgcminusg 13366  opprcoppr 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-minusg 13369  df-oppr 13863
This theorem is referenced by:  unitnegcl  13925
  Copyright terms: Public domain W3C validator