![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprnegg | GIF version |
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprneg.2 | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
opprnegg | ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | eqid 2193 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | opprbasg 13571 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
4 | eqid 2193 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | 1, 4 | oppraddg 13572 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
6 | 5 | oveqd 5935 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑦(+g‘𝑅)𝑥) = (𝑦(+g‘𝑂)𝑥)) |
7 | eqid 2193 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
8 | 1, 7 | oppr0g 13577 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) = (0g‘𝑂)) |
9 | 6, 8 | eqeq12d 2208 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑦(+g‘𝑅)𝑥) = (0g‘𝑅) ↔ (𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) |
10 | 3, 9 | riotaeqbidv 5876 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)) = (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) |
11 | 3, 10 | mpteq12dv 4111 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
12 | opprneg.2 | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
13 | 2, 4, 7, 12 | grpinvfvalg 13114 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)))) |
14 | 1 | opprex 13569 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
15 | eqid 2193 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
16 | eqid 2193 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
17 | eqid 2193 | . . . 4 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
18 | eqid 2193 | . . . 4 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
19 | 15, 16, 17, 18 | grpinvfvalg 13114 | . . 3 ⊢ (𝑂 ∈ V → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
20 | 14, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) |
21 | 11, 13, 20 | 3eqtr4d 2236 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4090 ‘cfv 5254 ℩crio 5872 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 invgcminusg 13073 opprcoppr 13563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-minusg 13076 df-oppr 13564 |
This theorem is referenced by: unitnegcl 13626 |
Copyright terms: Public domain | W3C validator |