ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprnegg GIF version

Theorem opprnegg 13579
Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprneg.2 𝑁 = (invg𝑅)
Assertion
Ref Expression
opprnegg (𝑅𝑉𝑁 = (invg𝑂))

Proof of Theorem opprnegg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2193 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbasg 13571 . . 3 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
4 eqid 2193 . . . . . . 7 (+g𝑅) = (+g𝑅)
51, 4oppraddg 13572 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
65oveqd 5935 . . . . 5 (𝑅𝑉 → (𝑦(+g𝑅)𝑥) = (𝑦(+g𝑂)𝑥))
7 eqid 2193 . . . . . 6 (0g𝑅) = (0g𝑅)
81, 7oppr0g 13577 . . . . 5 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
96, 8eqeq12d 2208 . . . 4 (𝑅𝑉 → ((𝑦(+g𝑅)𝑥) = (0g𝑅) ↔ (𝑦(+g𝑂)𝑥) = (0g𝑂)))
103, 9riotaeqbidv 5876 . . 3 (𝑅𝑉 → (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅)) = (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂)))
113, 10mpteq12dv 4111 . 2 (𝑅𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
12 opprneg.2 . . 3 𝑁 = (invg𝑅)
132, 4, 7, 12grpinvfvalg 13114 . 2 (𝑅𝑉𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (𝑦 ∈ (Base‘𝑅)(𝑦(+g𝑅)𝑥) = (0g𝑅))))
141opprex 13569 . . 3 (𝑅𝑉𝑂 ∈ V)
15 eqid 2193 . . . 4 (Base‘𝑂) = (Base‘𝑂)
16 eqid 2193 . . . 4 (+g𝑂) = (+g𝑂)
17 eqid 2193 . . . 4 (0g𝑂) = (0g𝑂)
18 eqid 2193 . . . 4 (invg𝑂) = (invg𝑂)
1915, 16, 17, 18grpinvfvalg 13114 . . 3 (𝑂 ∈ V → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2014, 19syl 14 . 2 (𝑅𝑉 → (invg𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (𝑦 ∈ (Base‘𝑂)(𝑦(+g𝑂)𝑥) = (0g𝑂))))
2111, 13, 203eqtr4d 2236 1 (𝑅𝑉𝑁 = (invg𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4090  cfv 5254  crio 5872  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  invgcminusg 13073  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-minusg 13076  df-oppr 13564
This theorem is referenced by:  unitnegcl  13626
  Copyright terms: Public domain W3C validator