| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opprnegg | GIF version | ||
| Description: The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) | 
| opprneg.2 | ⊢ 𝑁 = (invg‘𝑅) | 
| Ref | Expression | 
|---|---|
| opprnegg | ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | eqid 2196 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | opprbasg 13631 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) | 
| 4 | eqid 2196 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | 1, 4 | oppraddg 13632 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) | 
| 6 | 5 | oveqd 5939 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑦(+g‘𝑅)𝑥) = (𝑦(+g‘𝑂)𝑥)) | 
| 7 | eqid 2196 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 8 | 1, 7 | oppr0g 13637 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) = (0g‘𝑂)) | 
| 9 | 6, 8 | eqeq12d 2211 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((𝑦(+g‘𝑅)𝑥) = (0g‘𝑅) ↔ (𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) | 
| 10 | 3, 9 | riotaeqbidv 5880 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)) = (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂))) | 
| 11 | 3, 10 | mpteq12dv 4115 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅))) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) | 
| 12 | opprneg.2 | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 13 | 2, 4, 7, 12 | grpinvfvalg 13174 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (𝑥 ∈ (Base‘𝑅) ↦ (℩𝑦 ∈ (Base‘𝑅)(𝑦(+g‘𝑅)𝑥) = (0g‘𝑅)))) | 
| 14 | 1 | opprex 13629 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) | 
| 15 | eqid 2196 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 16 | eqid 2196 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 17 | eqid 2196 | . . . 4 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
| 18 | eqid 2196 | . . . 4 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
| 19 | 15, 16, 17, 18 | grpinvfvalg 13174 | . . 3 ⊢ (𝑂 ∈ V → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) | 
| 20 | 14, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑂) = (𝑥 ∈ (Base‘𝑂) ↦ (℩𝑦 ∈ (Base‘𝑂)(𝑦(+g‘𝑂)𝑥) = (0g‘𝑂)))) | 
| 21 | 11, 13, 20 | 3eqtr4d 2239 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 ‘cfv 5258 ℩crio 5876 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 invgcminusg 13133 opprcoppr 13623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-minusg 13136 df-oppr 13624 | 
| This theorem is referenced by: unitnegcl 13686 | 
| Copyright terms: Public domain | W3C validator |