ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod GIF version

Theorem rinvmod 13439
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6117. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b 𝐵 = (Base‘𝐺)
rinvmod.0 0 = (0g𝐺)
rinvmod.p + = (+g𝐺)
rinvmod.m (𝜑𝐺 ∈ CMnd)
rinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
rinvmod (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
21adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐺 ∈ CMnd)
3 simpr 110 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝑤𝐵)
4 rinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
54adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐴𝐵)
6 rinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
7 rinvmod.p . . . . . . . . 9 + = (+g𝐺)
86, 7cmncom 13432 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑤𝐵𝐴𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
92, 3, 5, 8syl3anc 1249 . . . . . . 7 ((𝜑𝑤𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
109adantr 276 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
11 simpr 110 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 )
1210, 11eqtrd 2229 . . . . 5 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 )
1312, 11jca 306 . . . 4 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
1413ex 115 . . 3 ((𝜑𝑤𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
1514ralrimiva 2570 . 2 (𝜑 → ∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
16 rinvmod.0 . . 3 0 = (0g𝐺)
17 cmnmnd 13431 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
181, 17syl 14 . . 3 (𝜑𝐺 ∈ Mnd)
196, 16, 7, 18, 4mndinvmod 13086 . 2 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
20 rmoim 2965 . 2 (∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 ))
2115, 19, 20sylc 62 1 (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  ∃*wrmo 2478  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator