ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod GIF version

Theorem rinvmod 13689
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6147. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b 𝐵 = (Base‘𝐺)
rinvmod.0 0 = (0g𝐺)
rinvmod.p + = (+g𝐺)
rinvmod.m (𝜑𝐺 ∈ CMnd)
rinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
rinvmod (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
21adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐺 ∈ CMnd)
3 simpr 110 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝑤𝐵)
4 rinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
54adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐴𝐵)
6 rinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
7 rinvmod.p . . . . . . . . 9 + = (+g𝐺)
86, 7cmncom 13682 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑤𝐵𝐴𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
92, 3, 5, 8syl3anc 1250 . . . . . . 7 ((𝜑𝑤𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
109adantr 276 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
11 simpr 110 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 )
1210, 11eqtrd 2239 . . . . 5 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 )
1312, 11jca 306 . . . 4 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
1413ex 115 . . 3 ((𝜑𝑤𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
1514ralrimiva 2580 . 2 (𝜑 → ∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
16 rinvmod.0 . . 3 0 = (0g𝐺)
17 cmnmnd 13681 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
181, 17syl 14 . . 3 (𝜑𝐺 ∈ Mnd)
196, 16, 7, 18, 4mndinvmod 13321 . 2 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
20 rmoim 2975 . 2 (∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 ))
2115, 19, 20sylc 62 1 (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  ∃*wrmo 2488  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Mndcmnd 13292  CMndccmn 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-cmn 13666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator