| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rinvmod | GIF version | ||
| Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6117. (Contributed by AV, 31-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| rinvmod.b | ⊢ 𝐵 = (Base‘𝐺) | 
| rinvmod.0 | ⊢ 0 = (0g‘𝐺) | 
| rinvmod.p | ⊢ + = (+g‘𝐺) | 
| rinvmod.m | ⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| rinvmod.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| rinvmod | ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rinvmod.m | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | 1 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐺 ∈ CMnd) | 
| 3 | simpr 110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) | |
| 4 | rinvmod.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | 4 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐴 ∈ 𝐵) | 
| 6 | rinvmod.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | rinvmod.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | cmncom 13432 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) | 
| 9 | 2, 3, 5, 8 | syl3anc 1249 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) | 
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) | 
| 11 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 ) | |
| 12 | 10, 11 | eqtrd 2229 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 ) | 
| 13 | 12, 11 | jca 306 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) | 
| 14 | 13 | ex 115 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) | 
| 15 | 14 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) | 
| 16 | rinvmod.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 17 | cmnmnd 13431 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 18 | 1, 17 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 19 | 6, 16, 7, 18, 4 | mndinvmod 13086 | . 2 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) | 
| 20 | rmoim 2965 | . 2 ⊢ (∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 )) | |
| 21 | 15, 19, 20 | sylc 62 | 1 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃*wrmo 2478 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 CMndccmn 13414 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-cmn 13416 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |