ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rinvmod GIF version

Theorem rinvmod 12908
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6058. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b 𝐵 = (Base‘𝐺)
rinvmod.0 0 = (0g𝐺)
rinvmod.p + = (+g𝐺)
rinvmod.m (𝜑𝐺 ∈ CMnd)
rinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
rinvmod (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
21adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐺 ∈ CMnd)
3 simpr 110 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝑤𝐵)
4 rinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
54adantr 276 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐴𝐵)
6 rinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
7 rinvmod.p . . . . . . . . 9 + = (+g𝐺)
86, 7cmncom 12901 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑤𝐵𝐴𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
92, 3, 5, 8syl3anc 1238 . . . . . . 7 ((𝜑𝑤𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
109adantr 276 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
11 simpr 110 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 )
1210, 11eqtrd 2208 . . . . 5 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 )
1312, 11jca 306 . . . 4 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
1413ex 115 . . 3 ((𝜑𝑤𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
1514ralrimiva 2548 . 2 (𝜑 → ∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
16 rinvmod.0 . . 3 0 = (0g𝐺)
17 cmnmnd 12900 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
181, 17syl 14 . . 3 (𝜑𝐺 ∈ Mnd)
196, 16, 7, 18, 4mndinvmod 12708 . 2 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
20 rmoim 2936 . 2 (∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 ))
2115, 19, 20sylc 62 1 (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wral 2453  ∃*wrmo 2456  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  0gc0g 12626  Mndcmnd 12682  CMndccmn 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-cmn 12886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator