| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2892 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 |
| This theorem is referenced by: rspc2va 2895 rspc3v 2897 disji2 4046 ontriexmidim 4583 wetriext 4638 f1veqaeq 5856 isorel 5895 oveqrspc2v 5989 fovcld 6068 caovclg 6117 caovcomg 6120 smoel 6404 dcdifsnid 6608 unfiexmid 7036 prfidceq 7046 fiintim 7049 supmoti 7116 supsnti 7128 isotilem 7129 onntri35 7378 onntri45 7382 cauappcvgprlem1 7802 caucvgprlemnkj 7809 caucvgprlemnbj 7810 caucvgprprlemval 7831 ltordlem 8585 frecuzrdgrrn 10585 frec2uzrdg 10586 frecuzrdgrcl 10587 frecuzrdgrclt 10592 seq3caopr3 10668 seq3homo 10704 seqhomog 10707 climcn2 11705 fprodcl2lem 12001 ennnfonelemim 12880 mhmlin 13384 issubg2m 13610 nsgbi 13625 ghmlin 13669 issubrng2 14057 issubrg2 14088 lmodlema 14139 islmodd 14140 rmodislmodlem 14197 rmodislmod 14198 rnglidlmcl 14327 inopn 14560 basis1 14604 basis2 14605 xmeteq0 14916 cncfi 15135 limccnp2lem 15233 logltb 15431 2sqlem8 15685 redcwlpo 16166 redc0 16168 reap0 16169 |
| Copyright terms: Public domain | W3C validator |