![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜒 | |
2 | nfv 1528 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspc2 2854 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 |
This theorem is referenced by: rspc2va 2857 rspc3v 2859 disji2 3998 ontriexmidim 4523 wetriext 4578 f1veqaeq 5772 isorel 5811 oveqrspc2v 5904 fovcl 5982 caovclg 6029 caovcomg 6032 smoel 6303 dcdifsnid 6507 unfiexmid 6919 fiintim 6930 supmoti 6994 supsnti 7006 isotilem 7007 onntri35 7238 onntri45 7242 cauappcvgprlem1 7660 caucvgprlemnkj 7667 caucvgprlemnbj 7668 caucvgprprlemval 7689 ltordlem 8441 frecuzrdgrrn 10410 frec2uzrdg 10411 frecuzrdgrcl 10412 frecuzrdgrclt 10417 seq3caopr3 10483 seq3homo 10512 climcn2 11319 fprodcl2lem 11615 ennnfonelemim 12427 mhmlin 12863 issubg2m 13054 nsgbi 13069 issubrg2 13367 lmodlema 13387 islmodd 13388 rmodislmodlem 13445 rmodislmod 13446 inopn 13588 basis1 13632 basis2 13633 xmeteq0 13944 cncfi 14150 limccnp2lem 14230 logltb 14380 2sqlem8 14555 redcwlpo 14888 redc0 14890 reap0 14891 |
Copyright terms: Public domain | W3C validator |