![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜒 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspc2 2875 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspc2va 2878 rspc3v 2880 disji2 4022 ontriexmidim 4554 wetriext 4609 f1veqaeq 5812 isorel 5851 oveqrspc2v 5945 fovcld 6023 caovclg 6071 caovcomg 6074 smoel 6353 dcdifsnid 6557 unfiexmid 6974 fiintim 6985 supmoti 7052 supsnti 7064 isotilem 7065 onntri35 7297 onntri45 7301 cauappcvgprlem1 7719 caucvgprlemnkj 7726 caucvgprlemnbj 7727 caucvgprprlemval 7748 ltordlem 8501 frecuzrdgrrn 10479 frec2uzrdg 10480 frecuzrdgrcl 10481 frecuzrdgrclt 10486 seq3caopr3 10562 seq3homo 10598 seqhomog 10601 climcn2 11452 fprodcl2lem 11748 ennnfonelemim 12581 mhmlin 13039 issubg2m 13259 nsgbi 13274 ghmlin 13318 issubrng2 13706 issubrg2 13737 lmodlema 13788 islmodd 13789 rmodislmodlem 13846 rmodislmod 13847 rnglidlmcl 13976 inopn 14171 basis1 14215 basis2 14216 xmeteq0 14527 cncfi 14733 limccnp2lem 14830 logltb 15009 2sqlem8 15210 redcwlpo 15545 redc0 15547 reap0 15548 |
Copyright terms: Public domain | W3C validator |