| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2888 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: rspc2va 2891 rspc3v 2893 disji2 4037 ontriexmidim 4570 wetriext 4625 f1veqaeq 5838 isorel 5877 oveqrspc2v 5971 fovcld 6050 caovclg 6099 caovcomg 6102 smoel 6386 dcdifsnid 6590 unfiexmid 7015 prfidceq 7025 fiintim 7028 supmoti 7095 supsnti 7107 isotilem 7108 onntri35 7349 onntri45 7353 cauappcvgprlem1 7772 caucvgprlemnkj 7779 caucvgprlemnbj 7780 caucvgprprlemval 7801 ltordlem 8555 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgrclt 10560 seq3caopr3 10636 seq3homo 10672 seqhomog 10675 climcn2 11620 fprodcl2lem 11916 ennnfonelemim 12795 mhmlin 13299 issubg2m 13525 nsgbi 13540 ghmlin 13584 issubrng2 13972 issubrg2 14003 lmodlema 14054 islmodd 14055 rmodislmodlem 14112 rmodislmod 14113 rnglidlmcl 14242 inopn 14475 basis1 14519 basis2 14520 xmeteq0 14831 cncfi 15050 limccnp2lem 15148 logltb 15346 2sqlem8 15600 redcwlpo 15994 redc0 15996 reap0 15997 |
| Copyright terms: Public domain | W3C validator |