| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2879 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspc2va 2882 rspc3v 2884 disji2 4027 ontriexmidim 4559 wetriext 4614 f1veqaeq 5819 isorel 5858 oveqrspc2v 5952 fovcld 6031 caovclg 6080 caovcomg 6083 smoel 6367 dcdifsnid 6571 unfiexmid 6988 prfidceq 6998 fiintim 7001 supmoti 7068 supsnti 7080 isotilem 7081 onntri35 7322 onntri45 7326 cauappcvgprlem1 7745 caucvgprlemnkj 7752 caucvgprlemnbj 7753 caucvgprprlemval 7774 ltordlem 8528 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgrclt 10526 seq3caopr3 10602 seq3homo 10638 seqhomog 10641 climcn2 11493 fprodcl2lem 11789 ennnfonelemim 12668 mhmlin 13171 issubg2m 13397 nsgbi 13412 ghmlin 13456 issubrng2 13844 issubrg2 13875 lmodlema 13926 islmodd 13927 rmodislmodlem 13984 rmodislmod 13985 rnglidlmcl 14114 inopn 14347 basis1 14391 basis2 14392 xmeteq0 14703 cncfi 14922 limccnp2lem 15020 logltb 15218 2sqlem8 15472 redcwlpo 15812 redc0 15814 reap0 15815 |
| Copyright terms: Public domain | W3C validator |