Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜒 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspc2 2845 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: rspc2va 2848 rspc3v 2850 disji2 3982 ontriexmidim 4506 wetriext 4561 f1veqaeq 5748 isorel 5787 oveqrspc2v 5880 fovcl 5958 caovclg 6005 caovcomg 6008 smoel 6279 dcdifsnid 6483 unfiexmid 6895 fiintim 6906 supmoti 6970 supsnti 6982 isotilem 6983 onntri35 7214 onntri45 7218 cauappcvgprlem1 7621 caucvgprlemnkj 7628 caucvgprlemnbj 7629 caucvgprprlemval 7650 ltordlem 8401 frecuzrdgrrn 10364 frec2uzrdg 10365 frecuzrdgrcl 10366 frecuzrdgrclt 10371 seq3caopr3 10437 seq3homo 10466 climcn2 11272 fprodcl2lem 11568 ennnfonelemim 12379 mhmlin 12690 inopn 12795 basis1 12839 basis2 12840 xmeteq0 13153 cncfi 13359 limccnp2lem 13439 logltb 13589 2sqlem8 13753 redcwlpo 14087 redc0 14089 reap0 14090 |
Copyright terms: Public domain | W3C validator |