| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1550 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2887 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 |
| This theorem is referenced by: rspc2va 2890 rspc3v 2892 disji2 4036 ontriexmidim 4569 wetriext 4624 f1veqaeq 5837 isorel 5876 oveqrspc2v 5970 fovcld 6049 caovclg 6098 caovcomg 6101 smoel 6385 dcdifsnid 6589 unfiexmid 7014 prfidceq 7024 fiintim 7027 supmoti 7094 supsnti 7106 isotilem 7107 onntri35 7348 onntri45 7352 cauappcvgprlem1 7771 caucvgprlemnkj 7778 caucvgprlemnbj 7779 caucvgprprlemval 7800 ltordlem 8554 frecuzrdgrrn 10551 frec2uzrdg 10552 frecuzrdgrcl 10553 frecuzrdgrclt 10558 seq3caopr3 10634 seq3homo 10670 seqhomog 10673 climcn2 11562 fprodcl2lem 11858 ennnfonelemim 12737 mhmlin 13241 issubg2m 13467 nsgbi 13482 ghmlin 13526 issubrng2 13914 issubrg2 13945 lmodlema 13996 islmodd 13997 rmodislmodlem 14054 rmodislmod 14055 rnglidlmcl 14184 inopn 14417 basis1 14461 basis2 14462 xmeteq0 14773 cncfi 14992 limccnp2lem 15090 logltb 15288 2sqlem8 15542 redcwlpo 15927 redc0 15929 reap0 15930 |
| Copyright terms: Public domain | W3C validator |