![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜒 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspc2 2876 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspc2va 2879 rspc3v 2881 disji2 4023 ontriexmidim 4555 wetriext 4610 f1veqaeq 5813 isorel 5852 oveqrspc2v 5946 fovcld 6024 caovclg 6073 caovcomg 6076 smoel 6355 dcdifsnid 6559 unfiexmid 6976 fiintim 6987 supmoti 7054 supsnti 7066 isotilem 7067 onntri35 7299 onntri45 7303 cauappcvgprlem1 7721 caucvgprlemnkj 7728 caucvgprlemnbj 7729 caucvgprprlemval 7750 ltordlem 8503 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgrclt 10489 seq3caopr3 10565 seq3homo 10601 seqhomog 10604 climcn2 11455 fprodcl2lem 11751 ennnfonelemim 12584 mhmlin 13042 issubg2m 13262 nsgbi 13277 ghmlin 13321 issubrng2 13709 issubrg2 13740 lmodlema 13791 islmodd 13792 rmodislmodlem 13849 rmodislmod 13850 rnglidlmcl 13979 inopn 14182 basis1 14226 basis2 14227 xmeteq0 14538 cncfi 14757 limccnp2lem 14855 logltb 15050 2sqlem8 15280 redcwlpo 15615 redc0 15617 reap0 15618 |
Copyright terms: Public domain | W3C validator |