| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1550 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2887 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 |
| This theorem is referenced by: rspc2va 2890 rspc3v 2892 disji2 4036 ontriexmidim 4569 wetriext 4624 f1veqaeq 5837 isorel 5876 oveqrspc2v 5970 fovcld 6049 caovclg 6098 caovcomg 6101 smoel 6385 dcdifsnid 6589 unfiexmid 7014 prfidceq 7024 fiintim 7027 supmoti 7094 supsnti 7106 isotilem 7107 onntri35 7348 onntri45 7352 cauappcvgprlem1 7771 caucvgprlemnkj 7778 caucvgprlemnbj 7779 caucvgprprlemval 7800 ltordlem 8554 frecuzrdgrrn 10551 frec2uzrdg 10552 frecuzrdgrcl 10553 frecuzrdgrclt 10558 seq3caopr3 10634 seq3homo 10670 seqhomog 10673 climcn2 11591 fprodcl2lem 11887 ennnfonelemim 12766 mhmlin 13270 issubg2m 13496 nsgbi 13511 ghmlin 13555 issubrng2 13943 issubrg2 13974 lmodlema 14025 islmodd 14026 rmodislmodlem 14083 rmodislmod 14084 rnglidlmcl 14213 inopn 14446 basis1 14490 basis2 14491 xmeteq0 14802 cncfi 15021 limccnp2lem 15119 logltb 15317 2sqlem8 15571 redcwlpo 15956 redc0 15958 reap0 15959 |
| Copyright terms: Public domain | W3C validator |