Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜒 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜓 | |
3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspc2 2841 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: rspc2va 2844 rspc3v 2846 disji2 3975 ontriexmidim 4499 wetriext 4554 f1veqaeq 5737 isorel 5776 oveqrspc2v 5869 fovcl 5947 caovclg 5994 caovcomg 5997 smoel 6268 dcdifsnid 6472 unfiexmid 6883 fiintim 6894 supmoti 6958 supsnti 6970 isotilem 6971 onntri35 7193 onntri45 7197 cauappcvgprlem1 7600 caucvgprlemnkj 7607 caucvgprlemnbj 7608 caucvgprprlemval 7629 ltordlem 8380 frecuzrdgrrn 10343 frec2uzrdg 10344 frecuzrdgrcl 10345 frecuzrdgrclt 10350 seq3caopr3 10416 seq3homo 10445 climcn2 11250 fprodcl2lem 11546 ennnfonelemim 12357 inopn 12641 basis1 12685 basis2 12686 xmeteq0 12999 cncfi 13205 limccnp2lem 13285 logltb 13435 2sqlem8 13599 redcwlpo 13934 redc0 13936 reap0 13937 |
Copyright terms: Public domain | W3C validator |