| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2918 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspc2va 2921 rspc3v 2923 disji2 4074 ontriexmidim 4613 wetriext 4668 f1veqaeq 5892 isorel 5931 oveqrspc2v 6027 fovcld 6108 caovclg 6157 caovcomg 6160 smoel 6444 dcdifsnid 6648 unfiexmid 7076 prfidceq 7086 fiintim 7089 supmoti 7156 supsnti 7168 isotilem 7169 onntri35 7418 onntri45 7422 cauappcvgprlem1 7842 caucvgprlemnkj 7849 caucvgprlemnbj 7850 caucvgprprlemval 7871 ltordlem 8625 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgrclt 10632 seq3caopr3 10708 seq3homo 10744 seqhomog 10747 climcn2 11815 fprodcl2lem 12111 ennnfonelemim 12990 mhmlin 13495 issubg2m 13721 nsgbi 13736 ghmlin 13780 issubrng2 14168 issubrg2 14199 lmodlema 14250 islmodd 14251 rmodislmodlem 14308 rmodislmod 14309 rnglidlmcl 14438 inopn 14671 basis1 14715 basis2 14716 xmeteq0 15027 cncfi 15246 limccnp2lem 15344 logltb 15542 2sqlem8 15796 redcwlpo 16382 redc0 16384 reap0 16385 |
| Copyright terms: Public domain | W3C validator |