| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜓 | |
| 3 | rspc2v.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 4 | rspc2v.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 5 | 1, 2, 3, 4 | rspc2 2879 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspc2va 2882 rspc3v 2884 disji2 4027 ontriexmidim 4559 wetriext 4614 f1veqaeq 5819 isorel 5858 oveqrspc2v 5952 fovcld 6031 caovclg 6080 caovcomg 6083 smoel 6367 dcdifsnid 6571 unfiexmid 6988 prfidceq 6998 fiintim 7001 supmoti 7068 supsnti 7080 isotilem 7081 onntri35 7320 onntri45 7324 cauappcvgprlem1 7743 caucvgprlemnkj 7750 caucvgprlemnbj 7751 caucvgprprlemval 7772 ltordlem 8526 frecuzrdgrrn 10517 frec2uzrdg 10518 frecuzrdgrcl 10519 frecuzrdgrclt 10524 seq3caopr3 10600 seq3homo 10636 seqhomog 10639 climcn2 11491 fprodcl2lem 11787 ennnfonelemim 12666 mhmlin 13169 issubg2m 13395 nsgbi 13410 ghmlin 13454 issubrng2 13842 issubrg2 13873 lmodlema 13924 islmodd 13925 rmodislmodlem 13982 rmodislmod 13983 rnglidlmcl 14112 inopn 14323 basis1 14367 basis2 14368 xmeteq0 14679 cncfi 14898 limccnp2lem 14996 logltb 15194 2sqlem8 15448 redcwlpo 15786 redc0 15788 reap0 15789 |
| Copyright terms: Public domain | W3C validator |