![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2858 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspccv 2861 rspcva 2862 rspccva 2863 rspcdva 2869 rspc3v 2880 rr19.3v 2899 rr19.28v 2900 rspsbc 3068 rspc2vd 3149 intmin 3890 ralxfrALT 4498 ontr2exmid 4557 reg2exmidlema 4566 0elsucexmid 4597 funcnvuni 5323 acexmidlemcase 5913 tfrlem1 6361 tfrlem9 6372 oawordriexmid 6523 nneneq 6913 diffitest 6943 xpfi 6986 ordiso2 7094 exmidontriimlem3 7283 prnmaxl 7548 prnminu 7549 cauappcvgprlemm 7705 cauappcvgprlemladdru 7716 cauappcvgprlemladdrl 7717 caucvgsrlemcl 7849 caucvgsrlemfv 7851 caucvgsr 7862 axcaucvglemres 7959 lbreu 8964 nnsub 9021 supinfneg 9660 infsupneg 9661 ublbneg 9678 fzrevral 10171 seq3caopr3 10562 seq3id3 10595 recan 11253 cau3lem 11258 caubnd2 11261 climshftlemg 11445 subcn2 11454 climcau 11490 serf0 11495 sumdc 11501 isumrpcl 11637 clim2prod 11682 prodmodclem2 11720 ndvdssub 12071 zsupcllemex 12083 dfgcd3 12147 dfgcd2 12151 coprmgcdb 12226 coprmdvds1 12229 nprm 12261 dvdsprm 12275 coprm 12282 sqrt2irr 12300 pcmpt 12481 pcmptdvds 12483 pcfac 12488 prmpwdvds 12493 lidrididd 12965 dfgrp2 13099 grpidinv2 13130 dfgrp3mlem 13170 issubg4m 13263 srgrz 13480 srglz 13481 srgisid 13482 rrgeq0i 13760 islmodd 13789 rmodislmod 13847 rnglidlmcl 13976 cnpnei 14387 lmss 14414 txlm 14447 psmet0 14495 metss 14662 metcnp3 14679 mulc1cncf 14744 cncfco 14746 2sqlem6 15207 2sqlem10 15212 bj-indsuc 15420 bj-inf2vnlem2 15463 trirec0 15534 iswomni0 15541 neap0mkv 15559 |
Copyright terms: Public domain | W3C validator |