![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2859 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: rspccv 2862 rspcva 2863 rspccva 2864 rspcdva 2870 rspc3v 2881 rr19.3v 2900 rr19.28v 2901 rspsbc 3069 rspc2vd 3150 intmin 3891 ralxfrALT 4499 ontr2exmid 4558 reg2exmidlema 4567 0elsucexmid 4598 funcnvuni 5324 acexmidlemcase 5914 tfrlem1 6363 tfrlem9 6374 oawordriexmid 6525 nneneq 6915 diffitest 6945 xpfi 6988 ordiso2 7096 exmidontriimlem3 7285 prnmaxl 7550 prnminu 7551 cauappcvgprlemm 7707 cauappcvgprlemladdru 7718 cauappcvgprlemladdrl 7719 caucvgsrlemcl 7851 caucvgsrlemfv 7853 caucvgsr 7864 axcaucvglemres 7961 lbreu 8966 nnsub 9023 supinfneg 9663 infsupneg 9664 ublbneg 9681 fzrevral 10174 seq3caopr3 10565 seq3id3 10598 recan 11256 cau3lem 11261 caubnd2 11264 climshftlemg 11448 subcn2 11457 climcau 11493 serf0 11498 sumdc 11504 isumrpcl 11640 clim2prod 11685 prodmodclem2 11723 ndvdssub 12074 zsupcllemex 12086 dfgcd3 12150 dfgcd2 12154 coprmgcdb 12229 coprmdvds1 12232 nprm 12264 dvdsprm 12278 coprm 12285 sqrt2irr 12303 pcmpt 12484 pcmptdvds 12486 pcfac 12491 prmpwdvds 12496 lidrididd 12968 dfgrp2 13102 grpidinv2 13133 dfgrp3mlem 13173 issubg4m 13266 srgrz 13483 srglz 13484 srgisid 13485 rrgeq0i 13763 islmodd 13792 rmodislmod 13850 rnglidlmcl 13979 cnpnei 14398 lmss 14425 txlm 14458 psmet0 14506 metss 14673 metcnp3 14690 mulc1cncf 14768 cncfco 14770 2sqlem6 15277 2sqlem10 15282 bj-indsuc 15490 bj-inf2vnlem2 15533 trirec0 15604 iswomni0 15611 neap0mkv 15629 |
Copyright terms: Public domain | W3C validator |