Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2833 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 |
This theorem is referenced by: rspccv 2836 rspcva 2837 rspccva 2838 rspcdva 2844 rspc3v 2855 rr19.3v 2874 rr19.28v 2875 rspsbc 3043 rspc2vd 3123 intmin 3860 ralxfrALT 4461 ontr2exmid 4518 reg2exmidlema 4527 0elsucexmid 4558 funcnvuni 5277 acexmidlemcase 5860 tfrlem1 6299 tfrlem9 6310 oawordriexmid 6461 nneneq 6847 diffitest 6877 xpfi 6919 ordiso2 7024 exmidontriimlem3 7212 prnmaxl 7462 prnminu 7463 cauappcvgprlemm 7619 cauappcvgprlemladdru 7630 cauappcvgprlemladdrl 7631 caucvgsrlemcl 7763 caucvgsrlemfv 7765 caucvgsr 7776 axcaucvglemres 7873 lbreu 8875 nnsub 8931 supinfneg 9568 infsupneg 9569 ublbneg 9586 fzrevral 10075 seq3caopr3 10451 seq3id3 10477 recan 11086 cau3lem 11091 caubnd2 11094 climshftlemg 11278 subcn2 11287 climcau 11323 serf0 11328 sumdc 11334 isumrpcl 11470 clim2prod 11515 prodmodclem2 11553 ndvdssub 11902 zsupcllemex 11914 dfgcd3 11978 dfgcd2 11982 coprmgcdb 12055 coprmdvds1 12058 nprm 12090 dvdsprm 12104 coprm 12111 sqrt2irr 12129 pcmpt 12308 pcmptdvds 12310 pcfac 12315 prmpwdvds 12320 lidrididd 12667 dfgrp2 12764 grpidinv2 12790 dfgrp3mlem 12829 srgrz 12964 srglz 12965 srgisid 12966 cnpnei 13290 lmss 13317 txlm 13350 psmet0 13398 metss 13565 metcnp3 13582 mulc1cncf 13647 cncfco 13649 2sqlem6 14027 2sqlem10 14032 bj-indsuc 14240 bj-inf2vnlem2 14283 trirec0 14353 iswomni0 14360 |
Copyright terms: Public domain | W3C validator |