| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2901 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspccv 2904 rspcva 2905 rspccva 2906 rspcdva 2912 rspc3v 2923 rr19.3v 2942 rr19.28v 2943 rspsbc 3112 rspc2vd 3193 intmin 3942 ralxfrALT 4557 ontr2exmid 4616 reg2exmidlema 4625 0elsucexmid 4656 funcnvuni 5389 acexmidlemcase 5995 tfrlem1 6452 tfrlem9 6463 oawordriexmid 6614 nneneq 7014 diffitest 7045 xpfi 7090 ordiso2 7198 exmidontriimlem3 7401 prnmaxl 7671 prnminu 7672 cauappcvgprlemm 7828 cauappcvgprlemladdru 7839 cauappcvgprlemladdrl 7840 caucvgsrlemcl 7972 caucvgsrlemfv 7974 caucvgsr 7985 axcaucvglemres 8082 lbreu 9088 nnsub 9145 supinfneg 9786 infsupneg 9787 ublbneg 9804 fzrevral 10297 zsupcllemex 10445 seq3caopr3 10708 seq3id3 10741 wrdind 11249 wrd2ind 11250 reuccatpfxs1lem 11273 recan 11615 cau3lem 11620 caubnd2 11623 climshftlemg 11808 subcn2 11817 climcau 11853 serf0 11858 sumdc 11864 isumrpcl 12000 clim2prod 12045 prodmodclem2 12083 ndvdssub 12436 dfgcd3 12526 dfgcd2 12530 coprmgcdb 12605 coprmdvds1 12608 nprm 12640 dvdsprm 12654 coprm 12661 sqrt2irr 12679 pcmpt 12861 pcmptdvds 12863 pcfac 12868 prmpwdvds 12873 lidrididd 13410 dfgrp2 13555 grpidinv2 13586 dfgrp3mlem 13626 issubg4m 13725 srgrz 13942 srglz 13943 srgisid 13944 rrgeq0i 14222 islmodd 14251 rmodislmod 14309 rnglidlmcl 14438 cnpnei 14887 lmss 14914 txlm 14947 psmet0 14995 metss 15162 metcnp3 15179 mulc1cncf 15257 cncfco 15259 2sqlem6 15793 2sqlem10 15798 usgruspgrben 15978 bj-indsuc 16249 bj-inf2vnlem2 16292 trirec0 16371 iswomni0 16378 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |