| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2862 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspccv 2865 rspcva 2866 rspccva 2867 rspcdva 2873 rspc3v 2884 rr19.3v 2903 rr19.28v 2904 rspsbc 3072 rspc2vd 3153 intmin 3895 ralxfrALT 4503 ontr2exmid 4562 reg2exmidlema 4571 0elsucexmid 4602 funcnvuni 5328 acexmidlemcase 5920 tfrlem1 6375 tfrlem9 6386 oawordriexmid 6537 nneneq 6927 diffitest 6957 xpfi 7002 ordiso2 7110 exmidontriimlem3 7308 prnmaxl 7574 prnminu 7575 cauappcvgprlemm 7731 cauappcvgprlemladdru 7742 cauappcvgprlemladdrl 7743 caucvgsrlemcl 7875 caucvgsrlemfv 7877 caucvgsr 7888 axcaucvglemres 7985 lbreu 8991 nnsub 9048 supinfneg 9688 infsupneg 9689 ublbneg 9706 fzrevral 10199 zsupcllemex 10339 seq3caopr3 10602 seq3id3 10635 recan 11293 cau3lem 11298 caubnd2 11301 climshftlemg 11486 subcn2 11495 climcau 11531 serf0 11536 sumdc 11542 isumrpcl 11678 clim2prod 11723 prodmodclem2 11761 ndvdssub 12114 dfgcd3 12204 dfgcd2 12208 coprmgcdb 12283 coprmdvds1 12286 nprm 12318 dvdsprm 12332 coprm 12339 sqrt2irr 12357 pcmpt 12539 pcmptdvds 12541 pcfac 12546 prmpwdvds 12551 lidrididd 13086 dfgrp2 13231 grpidinv2 13262 dfgrp3mlem 13302 issubg4m 13401 srgrz 13618 srglz 13619 srgisid 13620 rrgeq0i 13898 islmodd 13927 rmodislmod 13985 rnglidlmcl 14114 cnpnei 14563 lmss 14590 txlm 14623 psmet0 14671 metss 14838 metcnp3 14855 mulc1cncf 14933 cncfco 14935 2sqlem6 15469 2sqlem10 15474 bj-indsuc 15682 bj-inf2vnlem2 15725 trirec0 15801 iswomni0 15808 neap0mkv 15826 |
| Copyright terms: Public domain | W3C validator |