| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) | 
| Ref | Expression | 
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2862 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 | 
| This theorem is referenced by: rspccv 2865 rspcva 2866 rspccva 2867 rspcdva 2873 rspc3v 2884 rr19.3v 2903 rr19.28v 2904 rspsbc 3072 rspc2vd 3153 intmin 3894 ralxfrALT 4502 ontr2exmid 4561 reg2exmidlema 4570 0elsucexmid 4601 funcnvuni 5327 acexmidlemcase 5917 tfrlem1 6366 tfrlem9 6377 oawordriexmid 6528 nneneq 6918 diffitest 6948 xpfi 6993 ordiso2 7101 exmidontriimlem3 7290 prnmaxl 7555 prnminu 7556 cauappcvgprlemm 7712 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 caucvgsrlemcl 7856 caucvgsrlemfv 7858 caucvgsr 7869 axcaucvglemres 7966 lbreu 8972 nnsub 9029 supinfneg 9669 infsupneg 9670 ublbneg 9687 fzrevral 10180 zsupcllemex 10320 seq3caopr3 10583 seq3id3 10616 recan 11274 cau3lem 11279 caubnd2 11282 climshftlemg 11467 subcn2 11476 climcau 11512 serf0 11517 sumdc 11523 isumrpcl 11659 clim2prod 11704 prodmodclem2 11742 ndvdssub 12095 dfgcd3 12177 dfgcd2 12181 coprmgcdb 12256 coprmdvds1 12259 nprm 12291 dvdsprm 12305 coprm 12312 sqrt2irr 12330 pcmpt 12512 pcmptdvds 12514 pcfac 12519 prmpwdvds 12524 lidrididd 13025 dfgrp2 13159 grpidinv2 13190 dfgrp3mlem 13230 issubg4m 13323 srgrz 13540 srglz 13541 srgisid 13542 rrgeq0i 13820 islmodd 13849 rmodislmod 13907 rnglidlmcl 14036 cnpnei 14455 lmss 14482 txlm 14515 psmet0 14563 metss 14730 metcnp3 14747 mulc1cncf 14825 cncfco 14827 2sqlem6 15361 2sqlem10 15366 bj-indsuc 15574 bj-inf2vnlem2 15617 trirec0 15688 iswomni0 15695 neap0mkv 15713 | 
| Copyright terms: Public domain | W3C validator |