| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2862 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: rspccv 2865 rspcva 2866 rspccva 2867 rspcdva 2873 rspc3v 2884 rr19.3v 2903 rr19.28v 2904 rspsbc 3072 rspc2vd 3153 intmin 3895 ralxfrALT 4503 ontr2exmid 4562 reg2exmidlema 4571 0elsucexmid 4602 funcnvuni 5328 acexmidlemcase 5920 tfrlem1 6375 tfrlem9 6386 oawordriexmid 6537 nneneq 6927 diffitest 6957 xpfi 7002 ordiso2 7110 exmidontriimlem3 7306 prnmaxl 7572 prnminu 7573 cauappcvgprlemm 7729 cauappcvgprlemladdru 7740 cauappcvgprlemladdrl 7741 caucvgsrlemcl 7873 caucvgsrlemfv 7875 caucvgsr 7886 axcaucvglemres 7983 lbreu 8989 nnsub 9046 supinfneg 9686 infsupneg 9687 ublbneg 9704 fzrevral 10197 zsupcllemex 10337 seq3caopr3 10600 seq3id3 10633 recan 11291 cau3lem 11296 caubnd2 11299 climshftlemg 11484 subcn2 11493 climcau 11529 serf0 11534 sumdc 11540 isumrpcl 11676 clim2prod 11721 prodmodclem2 11759 ndvdssub 12112 dfgcd3 12202 dfgcd2 12206 coprmgcdb 12281 coprmdvds1 12284 nprm 12316 dvdsprm 12330 coprm 12337 sqrt2irr 12355 pcmpt 12537 pcmptdvds 12539 pcfac 12544 prmpwdvds 12549 lidrididd 13084 dfgrp2 13229 grpidinv2 13260 dfgrp3mlem 13300 issubg4m 13399 srgrz 13616 srglz 13617 srgisid 13618 rrgeq0i 13896 islmodd 13925 rmodislmod 13983 rnglidlmcl 14112 cnpnei 14539 lmss 14566 txlm 14599 psmet0 14647 metss 14814 metcnp3 14831 mulc1cncf 14909 cncfco 14911 2sqlem6 15445 2sqlem10 15450 bj-indsuc 15658 bj-inf2vnlem2 15701 trirec0 15775 iswomni0 15782 neap0mkv 15800 |
| Copyright terms: Public domain | W3C validator |