Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2824 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: rspccv 2827 rspcva 2828 rspccva 2829 rspcdva 2835 rspc3v 2846 rr19.3v 2865 rr19.28v 2866 rspsbc 3033 intmin 3844 ralxfrALT 4445 ontr2exmid 4502 reg2exmidlema 4511 0elsucexmid 4542 funcnvuni 5257 acexmidlemcase 5837 tfrlem1 6276 tfrlem9 6287 oawordriexmid 6438 nneneq 6823 diffitest 6853 xpfi 6895 ordiso2 7000 exmidontriimlem3 7179 prnmaxl 7429 prnminu 7430 cauappcvgprlemm 7586 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 caucvgsrlemcl 7730 caucvgsrlemfv 7732 caucvgsr 7743 axcaucvglemres 7840 lbreu 8840 nnsub 8896 supinfneg 9533 infsupneg 9534 ublbneg 9551 fzrevral 10040 seq3caopr3 10416 seq3id3 10442 recan 11051 cau3lem 11056 caubnd2 11059 climshftlemg 11243 subcn2 11252 climcau 11288 serf0 11293 sumdc 11299 isumrpcl 11435 clim2prod 11480 prodmodclem2 11518 ndvdssub 11867 zsupcllemex 11879 dfgcd3 11943 dfgcd2 11947 coprmgcdb 12020 coprmdvds1 12023 nprm 12055 dvdsprm 12069 coprm 12076 sqrt2irr 12094 pcmpt 12273 pcmptdvds 12275 pcfac 12280 prmpwdvds 12285 lidrididd 12613 cnpnei 12869 lmss 12896 txlm 12929 psmet0 12977 metss 13144 metcnp3 13161 mulc1cncf 13226 cncfco 13228 2sqlem6 13606 2sqlem10 13611 bj-indsuc 13820 bj-inf2vnlem2 13863 trirec0 13933 iswomni0 13940 |
Copyright terms: Public domain | W3C validator |