Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2828 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: rspccv 2831 rspcva 2832 rspccva 2833 rspcdva 2839 rspc3v 2850 rr19.3v 2869 rr19.28v 2870 rspsbc 3037 rspc2vd 3117 intmin 3851 ralxfrALT 4452 ontr2exmid 4509 reg2exmidlema 4518 0elsucexmid 4549 funcnvuni 5267 acexmidlemcase 5848 tfrlem1 6287 tfrlem9 6298 oawordriexmid 6449 nneneq 6835 diffitest 6865 xpfi 6907 ordiso2 7012 exmidontriimlem3 7200 prnmaxl 7450 prnminu 7451 cauappcvgprlemm 7607 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 caucvgsrlemcl 7751 caucvgsrlemfv 7753 caucvgsr 7764 axcaucvglemres 7861 lbreu 8861 nnsub 8917 supinfneg 9554 infsupneg 9555 ublbneg 9572 fzrevral 10061 seq3caopr3 10437 seq3id3 10463 recan 11073 cau3lem 11078 caubnd2 11081 climshftlemg 11265 subcn2 11274 climcau 11310 serf0 11315 sumdc 11321 isumrpcl 11457 clim2prod 11502 prodmodclem2 11540 ndvdssub 11889 zsupcllemex 11901 dfgcd3 11965 dfgcd2 11969 coprmgcdb 12042 coprmdvds1 12045 nprm 12077 dvdsprm 12091 coprm 12098 sqrt2irr 12116 pcmpt 12295 pcmptdvds 12297 pcfac 12302 prmpwdvds 12307 lidrididd 12636 dfgrp2 12732 grpidinv2 12758 cnpnei 13013 lmss 13040 txlm 13073 psmet0 13121 metss 13288 metcnp3 13305 mulc1cncf 13370 cncfco 13372 2sqlem6 13750 2sqlem10 13755 bj-indsuc 13963 bj-inf2vnlem2 14006 trirec0 14076 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |