![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspcv | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | rspc 2836 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2740 |
This theorem is referenced by: rspccv 2839 rspcva 2840 rspccva 2841 rspcdva 2847 rspc3v 2858 rr19.3v 2877 rr19.28v 2878 rspsbc 3046 rspc2vd 3126 intmin 3865 ralxfrALT 4468 ontr2exmid 4525 reg2exmidlema 4534 0elsucexmid 4565 funcnvuni 5286 acexmidlemcase 5870 tfrlem1 6309 tfrlem9 6320 oawordriexmid 6471 nneneq 6857 diffitest 6887 xpfi 6929 ordiso2 7034 exmidontriimlem3 7222 prnmaxl 7487 prnminu 7488 cauappcvgprlemm 7644 cauappcvgprlemladdru 7655 cauappcvgprlemladdrl 7656 caucvgsrlemcl 7788 caucvgsrlemfv 7790 caucvgsr 7801 axcaucvglemres 7898 lbreu 8902 nnsub 8958 supinfneg 9595 infsupneg 9596 ublbneg 9613 fzrevral 10105 seq3caopr3 10481 seq3id3 10507 recan 11118 cau3lem 11123 caubnd2 11126 climshftlemg 11310 subcn2 11319 climcau 11355 serf0 11360 sumdc 11366 isumrpcl 11502 clim2prod 11547 prodmodclem2 11585 ndvdssub 11935 zsupcllemex 11947 dfgcd3 12011 dfgcd2 12015 coprmgcdb 12088 coprmdvds1 12091 nprm 12123 dvdsprm 12137 coprm 12144 sqrt2irr 12162 pcmpt 12341 pcmptdvds 12343 pcfac 12348 prmpwdvds 12353 lidrididd 12801 dfgrp2 12902 grpidinv2 12928 dfgrp3mlem 12968 issubg4m 13053 srgrz 13167 srglz 13168 srgisid 13169 islmodd 13383 rmodislmod 13441 cnpnei 13722 lmss 13749 txlm 13782 psmet0 13830 metss 13997 metcnp3 14014 mulc1cncf 14079 cncfco 14081 2sqlem6 14470 2sqlem10 14475 bj-indsuc 14683 bj-inf2vnlem2 14726 trirec0 14795 iswomni0 14802 neap0mkv 14819 |
Copyright terms: Public domain | W3C validator |