| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2875 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 |
| This theorem is referenced by: rspccv 2878 rspcva 2879 rspccva 2880 rspcdva 2886 rspc3v 2897 rr19.3v 2916 rr19.28v 2917 rspsbc 3085 rspc2vd 3166 intmin 3911 ralxfrALT 4522 ontr2exmid 4581 reg2exmidlema 4590 0elsucexmid 4621 funcnvuni 5352 acexmidlemcase 5952 tfrlem1 6407 tfrlem9 6418 oawordriexmid 6569 nneneq 6969 diffitest 6999 xpfi 7044 ordiso2 7152 exmidontriimlem3 7351 prnmaxl 7621 prnminu 7622 cauappcvgprlemm 7778 cauappcvgprlemladdru 7789 cauappcvgprlemladdrl 7790 caucvgsrlemcl 7922 caucvgsrlemfv 7924 caucvgsr 7935 axcaucvglemres 8032 lbreu 9038 nnsub 9095 supinfneg 9736 infsupneg 9737 ublbneg 9754 fzrevral 10247 zsupcllemex 10395 seq3caopr3 10658 seq3id3 10691 wrdind 11198 wrd2ind 11199 recan 11495 cau3lem 11500 caubnd2 11503 climshftlemg 11688 subcn2 11697 climcau 11733 serf0 11738 sumdc 11744 isumrpcl 11880 clim2prod 11925 prodmodclem2 11963 ndvdssub 12316 dfgcd3 12406 dfgcd2 12410 coprmgcdb 12485 coprmdvds1 12488 nprm 12520 dvdsprm 12534 coprm 12541 sqrt2irr 12559 pcmpt 12741 pcmptdvds 12743 pcfac 12748 prmpwdvds 12753 lidrididd 13289 dfgrp2 13434 grpidinv2 13465 dfgrp3mlem 13505 issubg4m 13604 srgrz 13821 srglz 13822 srgisid 13823 rrgeq0i 14101 islmodd 14130 rmodislmod 14188 rnglidlmcl 14317 cnpnei 14766 lmss 14793 txlm 14826 psmet0 14874 metss 15041 metcnp3 15058 mulc1cncf 15136 cncfco 15138 2sqlem6 15672 2sqlem10 15677 bj-indsuc 16002 bj-inf2vnlem2 16045 trirec0 16124 iswomni0 16131 neap0mkv 16149 |
| Copyright terms: Public domain | W3C validator |