| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcv | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspcv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | rspcv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc 2870 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 |
| This theorem is referenced by: rspccv 2873 rspcva 2874 rspccva 2875 rspcdva 2881 rspc3v 2892 rr19.3v 2911 rr19.28v 2912 rspsbc 3080 rspc2vd 3161 intmin 3904 ralxfrALT 4513 ontr2exmid 4572 reg2exmidlema 4581 0elsucexmid 4612 funcnvuni 5342 acexmidlemcase 5938 tfrlem1 6393 tfrlem9 6404 oawordriexmid 6555 nneneq 6953 diffitest 6983 xpfi 7028 ordiso2 7136 exmidontriimlem3 7334 prnmaxl 7600 prnminu 7601 cauappcvgprlemm 7757 cauappcvgprlemladdru 7768 cauappcvgprlemladdrl 7769 caucvgsrlemcl 7901 caucvgsrlemfv 7903 caucvgsr 7914 axcaucvglemres 8011 lbreu 9017 nnsub 9074 supinfneg 9715 infsupneg 9716 ublbneg 9733 fzrevral 10226 zsupcllemex 10371 seq3caopr3 10634 seq3id3 10667 recan 11362 cau3lem 11367 caubnd2 11370 climshftlemg 11555 subcn2 11564 climcau 11600 serf0 11605 sumdc 11611 isumrpcl 11747 clim2prod 11792 prodmodclem2 11830 ndvdssub 12183 dfgcd3 12273 dfgcd2 12277 coprmgcdb 12352 coprmdvds1 12355 nprm 12387 dvdsprm 12401 coprm 12408 sqrt2irr 12426 pcmpt 12608 pcmptdvds 12610 pcfac 12615 prmpwdvds 12620 lidrididd 13156 dfgrp2 13301 grpidinv2 13332 dfgrp3mlem 13372 issubg4m 13471 srgrz 13688 srglz 13689 srgisid 13690 rrgeq0i 13968 islmodd 13997 rmodislmod 14055 rnglidlmcl 14184 cnpnei 14633 lmss 14660 txlm 14693 psmet0 14741 metss 14908 metcnp3 14925 mulc1cncf 15003 cncfco 15005 2sqlem6 15539 2sqlem10 15544 bj-indsuc 15797 bj-inf2vnlem2 15840 trirec0 15916 iswomni0 15923 neap0mkv 15941 |
| Copyright terms: Public domain | W3C validator |