| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpoxopovel | GIF version | ||
| Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | 
| Ref | Expression | 
|---|---|
| mpoxopovel | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpoxopoveq.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
| 2 | 1 | mpoxopn0yelv 6297 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) | 
| 3 | 2 | pm4.71rd 394 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)))) | 
| 4 | 1 | mpoxopoveq 6298 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) | 
| 5 | 4 | eleq2d 2266 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) | 
| 6 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑛𝑉 | |
| 7 | 6 | elrabsf 3028 | . . . . . 6 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) | 
| 8 | sbccom 3065 | . . . . . . . 8 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑) | |
| 9 | sbccom 3065 | . . . . . . . . 9 ⊢ ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | |
| 10 | 9 | sbcbii 3049 | . . . . . . . 8 ⊢ ([〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | 
| 11 | 8, 10 | bitri 184 | . . . . . . 7 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | 
| 12 | 11 | anbi2i 457 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) | 
| 13 | 7, 12 | bitri 184 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) | 
| 14 | 5, 13 | bitrdi 196 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | 
| 15 | 14 | pm5.32da 452 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))) | 
| 16 | 3anass 984 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | |
| 17 | 15, 16 | bitr4di 198 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | 
| 18 | 3, 17 | bitrd 188 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {crab 2479 Vcvv 2763 [wsbc 2989 〈cop 3625 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 1st c1st 6196 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |