| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoxopovel | GIF version | ||
| Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| mpoxopovel | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
| 2 | 1 | mpoxopn0yelv 6325 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
| 3 | 2 | pm4.71rd 394 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)))) |
| 4 | 1 | mpoxopoveq 6326 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| 5 | 4 | eleq2d 2275 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
| 6 | nfcv 2348 | . . . . . . 7 ⊢ Ⅎ𝑛𝑉 | |
| 7 | 6 | elrabsf 3037 | . . . . . 6 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
| 8 | sbccom 3074 | . . . . . . . 8 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑) | |
| 9 | sbccom 3074 | . . . . . . . . 9 ⊢ ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | |
| 10 | 9 | sbcbii 3058 | . . . . . . . 8 ⊢ ([〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
| 11 | 8, 10 | bitri 184 | . . . . . . 7 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
| 12 | 11 | anbi2i 457 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
| 13 | 7, 12 | bitri 184 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
| 14 | 5, 13 | bitrdi 196 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
| 15 | 14 | pm5.32da 452 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))) |
| 16 | 3anass 985 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | |
| 17 | 15, 16 | bitr4di 198 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
| 18 | 3, 17 | bitrd 188 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 {crab 2488 Vcvv 2772 [wsbc 2998 〈cop 3636 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 1st c1st 6224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |