![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpoxopovel | GIF version |
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
Ref | Expression |
---|---|
mpoxopovel | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopn0yelv 6090 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
3 | 2 | pm4.71rd 389 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)))) |
4 | 1 | mpoxopoveq 6091 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
5 | 4 | eleq2d 2184 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | nfcv 2255 | . . . . . . 7 ⊢ Ⅎ𝑛𝑉 | |
7 | 6 | elrabsf 2915 | . . . . . 6 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑)) |
8 | sbccom 2952 | . . . . . . . 8 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑) | |
9 | sbccom 2952 | . . . . . . . . 9 ⊢ ([𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [𝐾 / 𝑦][𝑁 / 𝑛]𝜑) | |
10 | 9 | sbcbii 2936 | . . . . . . . 8 ⊢ ([〈𝑉, 𝑊〉 / 𝑥][𝑁 / 𝑛][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
11 | 8, 10 | bitri 183 | . . . . . . 7 ⊢ ([𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑 ↔ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) |
12 | 11 | anbi2i 450 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ [𝑁 / 𝑛][〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
13 | 7, 12 | bitri 183 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)) |
14 | 5, 13 | syl6bb 195 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
15 | 14 | pm5.32da 445 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑)))) |
16 | 3anass 949 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) | |
17 | 15, 16 | syl6bbr 197 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
18 | 3, 17 | bitrd 187 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦][𝑁 / 𝑛]𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 {crab 2394 Vcvv 2657 [wsbc 2878 〈cop 3496 ‘cfv 5081 (class class class)co 5728 ∈ cmpo 5730 1st c1st 5990 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |