ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2g GIF version

Theorem sbcel2g 3125
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
sbcel2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2g
StepHypRef Expression
1 sbcel12g 3119 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2 csbconstg 3118 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32eleq1d 2278 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐵𝐴 / 𝑥𝐶))
41, 3bitrd 188 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2180  [wsbc 3008  csb 3104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-sbc 3009  df-csb 3105
This theorem is referenced by:  csbcomg  3127  sbccsbg  3133  sbnfc2  3165  csbabg  3166  sbcssg  3580  csbunig  3875  csbxpg  4777  csbdmg  4894  csbrng  5166  bj-sels  16187
  Copyright terms: Public domain W3C validator