| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcel2g | GIF version | ||
| Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcel2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12g 3119 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3118 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | 2 | eleq1d 2278 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 [wsbc 3008 ⦋csb 3104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sbc 3009 df-csb 3105 |
| This theorem is referenced by: csbcomg 3127 sbccsbg 3133 sbnfc2 3165 csbabg 3166 sbcssg 3580 csbunig 3875 csbxpg 4777 csbdmg 4894 csbrng 5166 bj-sels 16187 |
| Copyright terms: Public domain | W3C validator |