ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2g GIF version

Theorem sbcel2g 3018
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
sbcel2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2g
StepHypRef Expression
1 sbcel12g 3012 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2 csbconstg 3011 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32eleq1d 2206 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐵𝐴 / 𝑥𝐶))
41, 3bitrd 187 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1480  [wsbc 2904  csb 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999
This theorem is referenced by:  csbcomg  3020  sbccsbg  3026  sbnfc2  3055  csbabg  3056  sbcssg  3467  csbunig  3739  csbxpg  4615  csbdmg  4728  csbrng  4995  bj-sels  13101
  Copyright terms: Public domain W3C validator