ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2g GIF version

Theorem sbcel2g 3052
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
sbcel2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2g
StepHypRef Expression
1 sbcel12g 3046 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2 csbconstg 3045 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32eleq1d 2226 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐵𝐴 / 𝑥𝐶))
41, 3bitrd 187 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2128  [wsbc 2937  csb 3031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sbc 2938  df-csb 3032
This theorem is referenced by:  csbcomg  3054  sbccsbg  3060  sbnfc2  3091  csbabg  3092  sbcssg  3503  csbunig  3780  csbxpg  4667  csbdmg  4780  csbrng  5047  bj-sels  13500
  Copyright terms: Public domain W3C validator